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Abstract
In this paper, we study conditions sufficient for strong consistency of a class of estimators of parameters of
nonlinear regression models. The study considers continuous functions depending on a vector of
parameters and a set of random regressors. The estimators chosen are minimizers of a generalized form of
the signed-rank norm. The generalization allows us to make consistency statements about minimizers of a
wide variety of norms including the 1L and 2L norms. By implementing trimming, it is shown that high
breakdown estimates can be obtained based on the proposed dispersion function.
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We congratulate Professor Mir Masoom Ali. His work in statistics has been
commendable and his dedication to its teaching is praiseworthy.

1.Introduction
Over the last twenty five years considerable work has been done on robust procedures for
linear models. Several classes of robust estimates have been proposed for these models.
One such class is the generalized signed-rank class of estimates. This class uses an
objective function which depends on the choice of a score function,   . If   is
monotone then the objective function is a norm and the geometry of the resulting robust
analysis, (estimation, testing, and confidence procedures), is similar to that of the
geometry of the traditional least squares (LS) analysis; see McKean and Schrader (1980).
Generally this robust analysis is highly efficient relative to the LS analysis; see the
monograph by Hettmansperger and McKean (1998) for a discussion of this analysis. For
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the simple location model, if Wilcoxon scores, ( ) =u u  , are used then this estimate is
the famous Hodges-Lehmann estimate while if sign scores are used, ( ) 1u   , it is the
sample median. If the monotonicity of   is relaxed then high breakdown estimates can
be obtained; see Hössjer (1994). Thus the signed-rank family of robust estimates for the
linear model contain estimates which range from highly efficient to those with high
breakdown and they generalize traditional nonparametric procedures in the simple
location problem.

Many interesting problems, though, are nonlinear in nature. Traditional procedures based
on LS estimation have been used for years. Since these LS procedures for nonlinear
models use the Euclidean norm they are as easily interpreted as their linear model
counterparts. The asymptotic theory for nonlinear LS has been developed by Jennrich
(1969) and Wu (1981), among others. In this paper, we propose a nonlinear analysis
based on the signed-rank objective function. The objective function is a norm if   is
monotone; hence, the estimates are easily interpretable. We keep our development quite
general, though, to include nonlinear estimates based on Hössjer-type estimates also.
Hence our estimates include the nonlinear extensions of the signed-rank Wilcoxon
estimate and the 1L estimate as well as the extensions of high breakdown linear model
estimates. Thus we offer a rich family of estimates from which to select for nonlinear
models.

Abebe & McKean (2007) studied the asymptotic properties of the Wilcoxon estimator for
the general nonlinear model. Just as in linear models, this estimator was shown to be
efficient but sensitive to local changes in the direction of x . Jure c ková (2008) studied
the asymptotic properties of general rank tests using regression rank scores for the
nonlinear model. Her approach uses the asymptotic equivalence of regression quantiles
and regression rank scores. This limits the set score functions that can be used. In
contrast, our proposed estimator allows for a set of scores generated by any
nondecreasing bounded score function that has at most a finite number of discontinuities.
In Section 2 we present our family of estimates for nonlinear models.

In Section 3, we show that these estimates are strongly consistent under certain
assumptions. We discuss these assumptions, contrasting them with assumptions for
current existing estimates. The same section contains a general discussion of interesting
special cases such as the 1L and the Wilcoxon. Section 4 discusses the conditions needed
to achieve positive breakdown of our estimator. In Section 5 we provide the proofs of our
theory.

2. Definition and Existence
Consider the following general regression model

0= ( , ) , 1i i iy f e i n   x (2.1)
where 0  is a vector of parameters, i x  is a vector of independent variables, and
f is a real-valued function defined on  . Let 1 1= {( , ), , ( , )}n ny yV x x be the set of

sample data points. Note that   V    .
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We shall assume that  is compact, 0 is an interior point of  , and ( , )f x is a
continuous function of  for each x  and a measurable function of x for each   .

We define the estimator of 0 to be any vector  minimizing

( )
=1

1( , ) = ( ) (| ( ) | )
n

n n i
i

D a i z
n

  V (2.2)

where ( ) = ( , )i i iz y f  x and ( )| ( ) | iz  is the i th ordered value among

1| ( ) |, ,| ( ) |nz z  . The function :    is continuous and strictly increasing. The
numbers ( )na i are scores generated as ( ) = ( / ( 1))na i i n   , for some bounded score
function : (0,1)    that has at most a finite number of discontinuities.

This estimator will be denoted by  n .

Because ( , )nD V is continuous in  , Lemma 2 of Jennrich (1969) implies the existence
of a minimizer of ( , )nD V .

We adopt Doob's (1994) convention and denote by pL , 1 p   , the space of
measurable functions : (0,1)h   for which | |ph is integrable for 1 <p  and the
space of essentially bounded measurable functions for =p  . The pL norm of h is

1/{ | | }p p
ph h   for 1 <p  and | |h ess sup h  for =p  . All integrals are with

respect to Lebesgue measure on (0,1) . The range of integration will be assumed to be
(0,1) unless specified otherwise.

3. Consistency

Let ( , , )P  be a probability space. For = 1, ,i n , assume that ix and

0= ( ; )i i ie y f  x are independent random variables (carried by ( , , )P  ) with
distributions H and G , respectively. We shall write x , e and | ( ) |z  for 1x , 1e and

1| ( ) |z  respectively. Let G denotes the distribution of | ( ) |z  and we will assume

A1: 0( ( ; ) = ( ; )) < 1P f f x x for any 0  ;
A2: for 1 q   , assume there exists a function h such that 1| ( ( )) | ( )G y h y   ,
  with [ ( )] <qE h Y  and,

A3: G has a density g that is symmetric about 0 and strictly decreasing on  .

As usual, we let . .a s convergence, denote almost sure convergence, i.e., pointwise
convergence everywhere except for possibly an event in  of probability 0.

Theorem 1.1 Under A1 - A3,  . .
0

a s
n  .
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Remark 1. 2 Assumption A1 is a very weak condition needed for 0 to be identified. The
linear version of A1 was given by Hössjer (1994) as (| ' |= 0) < 1P  x under the
assumption that 0 = 0 .

Remark 2. 3 Since <p    for p such that 1/ 1/ = 1p q , then A2 puts h and   in
conjugate spaces when (1, )p  . Hölder's inequality ensures that the product

1( )( )G   is integrable. Furthermore, if  is a convex function, an application of
Minkowski's inequality yields

1/ 1/ 1/
0{ [ (| ( ) |)] } { [ (| |) ]} { [ (| ( ; ) ( ; ) |) ]} .q q q q q qE z E e E f f       x x

Thus separate conditions on e and f are sufficient for [ (| ( ) |) ] <qE z   .

Remark 3.4 Condition A3 admits a wide variety of error distributions examples of which
are the normal, double exponential and Cauchy distributions with location parameter
equal to 0.

Some Corollaries

Next some special cases of interest are considered. We consider the 1L , least squares,
signed-rank Wilcoxon, and their trimmed variations. All these cases involve a convex 
and hence Remark 2 is directly applicable. Trimming is implemented by "chopping-off"
the ends of the score generating function,   [cf Hössjer (1994)]. The proofs follow from
Theorem 1 in a straightforward manner.

Least Squares, Least Trimmed Squares

Let ( )AI  be a function such that ( ) = 1AI  if A and ( ) = 0AI  otherwise. Let

( , )( ) = ( )u I u   for 0 < 1   and 2( ) =w w for 0w  . In the case where = 0
and = 1 the dispersion function given by (2.2) is the least squares dispersion function.
If 0 < < < 1  , then the dispersion function becomes the least trimmed squares
dispersion. The following corollary gives the sufficient conditions for the strong
consistency of the least squares estimator by taking = = 2p q in Theorem 1.

Corollary 1. 5 If

B1: 0( ( ; ) = ( ; )) < 1P f f x x for any 0  ,

B2: 2( ) <E e  and 2
0([ ( ; ) ( ; )] ) <E f f  x x for all   , and

B3: G has a density g that is symmetric about 0 and strictly decreasing on  ,
then the least squares (least trimmed squares) estimator is strongly consistent for 0 .
Jennrich (1969) establishes the strong consistency of the least squares estimator under
some assumptions. His assumptions in the notation of this paper are

J1: 2
0([ ( ; ) ( ; )] ) = 0E f f x x if and only if 0=  ,
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J2: 2( ) <E e  and 2
0([ ( ; ) ( ; )] ) <E f f  x x for all   , and

J3: ( ) = 0E e .

Assumptions B2 and J2 are identical. B3 and J3, while not generally comparable, are
identical in most practical situations where a symmetric, unimodal error density is
assumed. Proceeding to compare B1 and J1, assume that B1 fails to hold, that is there
exists a point 0'  in  such that 0( ( ; ') = ( ; )) = 1P f f x x . This implies that

2
0([ ( ; ') ( ; )] ) = 0E f f x x . Thus J1 fails. The converse is also immediate. Hence our

assumptions reduce to the assumptions of Jennrich (1969) in the case of least squares.

For linear models, the consistency of the least trimmed squares estimator is established
by Víšek (2006). He considers the estimator to be nonlinear, since a subset of the data is
considered, and establishes consistency using two different approaches: (1) using an
asymptotic linearity argument and (2) using the uniform law of large numbers of
Andrews (1987). Čižek (2006) applied the approach used in Víšek (2006) and studied
least trimmed squares estimators for nonlinear regression models. His study included
models with certain types of dependence such as  -mixing. The conditions given in
Víšek (2006) and Čižek (2006) are general; however, our approach establishes
consistency for a much larger class of models and estimators.

1L , Trimmed Absolute Deviations

The 1L estimator corresponds to the case where 1   and ( ) =w w for 0w  . A
situation similar to the least trimmed squares estimator holds for the trimmed absolute
deviations estimator. The sufficient conditions for the strong consistency of the 1L and
trimmed absolute deviations estimators can be found from Theorem 1 by taking =p 
and = 1q . These are given in the following corollary.

Corollary 2. 6 If

C1: 0( ( ; ) = ( ; )) < 1P f f x x for any 0  ,
C2: (| |) <E e  and 0(| ( ; ) ( ; ) |) <E f f  x x for all   , and
C3:G has a density g that is symmetric about 0 and strictly decreasing on  , then the

1L (trimmed absolute deviations) estimator is strongly consistent for 0 .

We next compare the result in Corollary 2 with the one given by Oberhofer (1982).
Oberhofer proves the weak consistency by imposing the following conditions.

O1:If * is a closed set not containing 0 , then there exist numbers > 0 and 0n such
that for all 0n n

1

* =1
| ( ) | min{ (| ( ) | /2) 1/2 ,1/2 ( | ( ) | /2)} .inf

n

i i i
i

n l G l G l


   



   
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for all such * where 0( ) = ( ; ) ( ; )i i il f f  x x .
O2: (| |) <E e  and 2

0([ ( ; ) ( ; )] ) <E f f  x x for all   , and
O3: (0) = 1/ 2G .

Here O3 is weaker than C3. However, O2 is stronger than C2. Following similar
contrapositive arguments as in the least squares case, we can easily show that O1 is also
stronger than C1 (see also Oberhofer (1982) p. 318). For a detailed discussion of this and
sufficient conditions for O1, the reader is referred to Oberhofer (1982).

Signed-Rank Wilcoxon

Set ( ) =u u  for 0 < < 1u and ( ) =w w for 0w  . The following corollary gives the
sufficient conditions for the strong consistency of the signed-rank Wilcoxon estimator.
The proof is analogous to the proof of Corollary 2 and thus omitted.

Corollary 3. 7 If

D1: 0( ( ; ) = ( ; )) < 1P f f x x for any 0  ,
D2:for some 1r  , (| | ) <rE e  and 0(| ( ; ) ( ; ) | ) <rE f f  x x for all   , and
D3:G has a density g that is symmetric about 0 and strictly decreasing on  , then the
signed-rank Wilcoxon estimator is strongly consistent for 0 .

Remark 4. 8Normal Scores

The frequently used normal scores are generated by
1 1( ) = ( ),

2
uu   



for (0,1)u where  represents the standard normal distribution function. These scores
were first proposed by Fraser (1957). Since   needs to be bounded for our approach to
work, our results do not directly extend to the case of normal scores. However, we may
use Winsorized normal scores such as

1

1

1

( ),     < 2 1;
1( ) = ( ),     2 1 < 2 1;

2
( ),     2 1.

k if u k
uu if k u k

k if u k





 



   
     

  

Usually we take = 4k .

4. Breakdown Point
One of the virtues of the estimators discussed in this paper is that they allow for
trimming. This in turn provides us with estimates that are robust when one or more of the
model assumptions are violated. In this section we will consider the breakdown point of
our estimator as a measure of its robustness. Assuming that the true value of the
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parameter to be estimated is in the interior of the parameter space  , breakdown
represents a severe form of inconsistency in that the estimator converges to a point on the
boundary of  instead of 0 .

Recall that 1 1= {( , ),..., ( , )}n ny y V x x  denotes the sample data points. Let m be the
set of all data sets obtained by replacing any m points in V by arbitrary points. The
finite sample breakdown point of an estimator  is defined as [see Donoho and Huber
(1983)]

  *

1
( , ) = : | ( ) ( ) |= ,supminn

m n m

m
n

   
  

 
  

 Z

V Z V


(4.1)

where ( ) V is the estimate obtained based on the sample V . In nonlinear regression,
however, this definition of the breakdown point fails since * is not invariant to nonlinear
reparameterizations. For a discussion of this see Stromberg and Ruppert (1992). We will
adopt the definition of breakdown point for nonlinear models given by Stromberg and
Ruppert (1992). The definition proceeds by defining finite sample upper and lower
breakdown points,   and   , which depend on the regression model, f . For any

0 x  , the upper and lower breakdown points are defined as







0 0
0

0 0 0

{ : ( , ( )) = ( , )}sup supmin

( , , , ) = ( , ) > ( , ),sup

1 ,

m n m

m f f
n

f if f f

otherwise


 

   

  











qZ

x Z x

V x x x


(4.2)

and







0 0
0

0 0 0

{ : ( , ( )) = ( , )}min inf inf

( , , , ) = ( , ) < ( , ),inf

1 .

mm n

m f f
n

f if f f

otherwise


 

   

  











qZ
x Z x

V x x x


(4.3)

Let
  

0 0 0( , , , ) = min{ ( , , , ), ( , , , )}.f f f      V x V x V x

The finite sample breakdown point is now defined as

 
0

0

( , , ) = { ( , , , )}.inff f   
x

V V x


(4.4)

The finite sample upper and lower breakdown points are defined analogously by
replacing  by   and   , respectively, in the above definition. Stromberg and Ruppert
(1992) also show that *=  in the case of a linear regression (i.e. ( , ) = 'f  x x ) and

1= n  for nonlinear least squares regression as expected.
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Assume the scores ( )na i are nonnegative and
= max{ : ( ) > 0}nk i a i

where [ / 2] 1k n  . Here [ ]b stands for the greatest integer less than or equal to b . This
forces at least the first half of the ordered absolute residuals to contribute to the
dispersion function. In light of this, the dispersion function may be written as

( )
=1

1( , ) = ( ) (| ( ) | )
k

n n i
i

D a i z
n

  V

The following theorem is a version of Theorem 3 of Stromberg and Ruppert (1992). We
impose the same conditions but give the result in terms of k . The results given are for
upper breakdown. Analogues for lower breakdown are straightforward. The proof is
obtained by replacing 1 i nmed   with 1

=1

k

i
n  and m with n k in Stromberg and

Ruppert's (1992) proof of Theorem 3. In the following, #( )A denotes the cardinality of
the set A .

Theorem 2.9 Assume for some fixed 0x there exist { :1 }k i i n    where
#( ) = 2 [ / 2]k n n k   such that

0
{ : ( , )> }

{ { ( , )}} = ( , )suplim inf inf i
M f M i k

f f
   

 
 x

x x

Then


0
1( , , , ) .n kf

n
 

 
V x

Theorem 2 establishes that even when the regression function f lies on the boundary for
a portion of the data, the bias of the estimator of 0 remains within reasonable bounds if
trimming is implemented. The following corollary gives the asymptotic (as n )
breakdown point of  n .

Corollary 4.10 Let = sup{ : ( ) > 0}u u   . The asymptotic breakdown point of  n is at
least 1  .

This is reminiscent of the breakdown point of a linear function of order statistics which is
equal to the smaller one of the two fractions of mass at either ends of the distribution
which receive weights equal to zero (Hampel, 1971). The same result obtained in
Corollary 4 was given by Hampel (1971) for one-sample location estimators based on
linear functions of order statistics (see sec. 7 (i) of Hampel (1971)).

Consider the class of models with the form 0 1( , ) = ( )f x g x   , where 2
0 1( , )  

and ( )g t is monotone increasing in t . This class of models is considered by Stromberg
and Ruppert (1992) and contains popular models like the logistic regression model

1
0 1 0 1( , ) = {1 exp( ( ))}g x x       . A breakdown point of 1  can be achieved if  n
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is obtained via a minimization of (2.2) with ( ) = ( / ( 1))na i i n   such that
= sup{ : ( ) > 0}u u   .

Remark  5.11A definition of breakdown based on 'badness measures' which includes the
definition given by Stromberg and Ruppert (1992) was given by Sakata and White (1995).
Under our assumptions this definition reduces to the one used in the current paper as
shown in Theorem 2.3 of Sakata and White (1995).

5. Proofs

Let (1) ( ), , n  be order statistics from a sample of n i.i.d. uniform (0,1) random
variables. Let : (0,1) , = 1, 2,nJ n  be Lebesgue measurable functions and let

: (0,1)g   be a Borel measurable function. Define ([ ] 1)( ) ( )n ntg t g   . In the defining

expression for the function ( , )nD V , (2.2), let G dnote the cdf of | ( ) |z  . Then we can
express ( , )nD V as

1
( )

=1

1( , ) = ( )( )( ).
n

n n i
i

D a i G
n   V  (5.1)

The following is Corollary 2.1 of van Zwet (1980) in the notation of this paper and is
given for completeness.

Lemma 1 (van Zwet)12 Let 1 p   , 1/ 1/ = 1p q , and suppose that p
nJ L for

= 1, 2,n  , qg L , and there exists a function pJ L such that
0 0

=lim
t t

n nJ J  for all

(0,1)t . If either

(i)1 < p   and <sup n pn J   , or
(ii) = 1p and { : = 1,2, }nJ n  is uniformly integrable,
then .a s

n nJ g Jg  .

For our purposes let (( 1)/ , / ]=1
( ) = ( / ( 1)) ( )n

n i n i ni
J t i n I t   for = 1, ,i n where AI is the

indicator of the set A and take =J   . Notice that nJ is a step function and thus the
uniform integrability condition in assumption (ii) of Lemma 1 becomes

1 | ( / ( 1)) |= 0,suplim
n i A

i n
n



 
 


where = { :| ( / ( 1)) |> }A i i n    . This condition is satisfied if we have convergence in

1L of nJ [cf. also Doob (1994), Theorem VI.18]. To this end, we will marginally violate
assumption (ii) of Lemma 1 and assume that

1/

=1

1{ | ( / ( 1)) | } <sup sup
n

p p
n p

n n i
J i n

n
     (5.2)

for 1 p   . Notice also that



Asheber Abebe, Joseph W. McKean, Huybrechts F. Bindele

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp543-555552

[ ] [ ] 1

0
=1 =1

1 1( / ( 1)) ( / ( 1)).
nt ntt

n
i i

i n J i n
n n
 


     

Taking the limit as n we obtain that
0 0

=lim
t t

n nJ    for all (0,1)t provided

that   has at most a finite number of discontinuities. Thus if   satisfies (5.2) and
qg L all the conditions of Lemma 1 hold. The following corollary is a special case of

this result.

Corollary 5.13 Let 1, , nW W be a random sample from a distribution F with support on
 . Let :    be a continuous Borel measurable function. Suppose, for

1 ,p q   with 1/ 1/ = 1p q , [ ( )] <qE W  and <p    . Then

. .1 1
( )

=1
( / ( 1)) ( ) ( )( ) < .

n
a s

n i
i

T n i n W F           

A formal proof of Corollary 5 may be constructed along the lines described in the
paragraph preceding it with the function g defined as 1F  . It will not be included
here for the sake of brevity.

Lemma 2.14 Under assumptions A1 - A3
. .( , ) ( ) . . , ,a s

nD a e uniformly for all    V  (5.3)

where :   is a function satisfying

0*
( ) > ( ),inf


   



(5.4)

for any * a closed subset of  not containing 0 .

Proof. The . .a s pointwise convergence of ( , )nD V follows from expression (5.1) and
Corollary 5, which also furnishes the function

1( ) ( ) ( ) < .G       (5.5)

Then under 1A - 3A , Theorem 2 of Jennrich (1969) gives (5.3).

To establish (5.4) we follow a similar strategy as in Hössjer (1994). Under 1A and 3A
for any > 0s , for 0  ,

0

0

0

( ) = (| { ( ; ) ( ; )} | )
= { (| { ( ; ) ( ; )} | | )}

< { (| | )} = ( )
e

e

G s P e f f s
E P e f f s

E P e s G s





 
 

  

  


x

x

x x
x x x




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Since  is a continuous function depending on  only through 1G  and since  is a
strictly increasing function, it follows that 0( ) > ( )    whenever 0  . Thus for any

*  , we have a *  such that *
0( ) > > ( )     . Then it follows from the

compactness of * that * 0( ) > ( )inf      .

Lemma 3.15 Let { }nh be a sequence of continuous functions defined on a compact set
p  and that converges uniformly to h . Then { }nh is equicontinuous on  .

Proof. Since { }nh converges uniformly to h , for any > 0 , there exists an N such
that | ( ) ( ) |< /3nh h   for all n N . The function h being continuous on a compact
set, it is uniformly continuous. Thus there exists some > 0 such that for all , '  
such that ' <    , we have | ( ) ( ') |< /3h h   . Then for all n N and for all

, '   such that ' <    , we have

| ( ) ( ') | | ( ) ( ) | | ( ') ( ') | | ( ) ( ') |< .n n n nh h h h h h h h              

Also, by uniform continuity of { }nh , for any fixed {1, , 1}n N  , there exists a > 0n
such that for all , '   with ' < n    , we have | ( ) ( ') |<n nh h   . Now set

1 1= min{ , , }N     . Then for all {1, , 1}n N  and all , '   with ' <     ,
we have | ( ) ( ') |<n nh h   .

Therefore, setting = min{ , }   , for all n and all , '   with ' <    , we
have | ( ) ( ') |<n nh h   .

Proof of Theorem 1. By Lemma 1 of Wu (1981), to establish the consistency of  n , it is
sufficient to show that

0*
( ( , ) ( , )) > 0 . .lim inf inf n n

n
D D a s


 

 

V V (5.6)

for any * a closed subset of  not containing 0 . But

0* *

0 0*

( ( , ) ( , )) ( , )liminf liminfinf inf

( , ) ( , ),liminfinf

n n n
n n

n
n

D D A

B C
 



  

  
  



  



V V V

V
(5.7)

where ( , ) = ( , ) ( )n nA D   V V , 0 0( , ) = ( ) ( )B       , and

0 0 0( , ) = ( ) ( , )n nC D   V V .
As a result of Corollary 5, 0( , ) = 0liminf nn C  V a.s. Due to Lemma 2 we have

* 0( , ) > 0inf B   . For the statement given in (5.6) to hold, it suffices to show is that
* ( , ) = 0liminf inf nn A  V a.s. Again by Lemma 2, . .( , ) 0a s

nA  V uniformly for
all *  . Also ( , )nA V , being continuous on a compact set * , is uniformly
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continuous on * . Then ( , )nA V is equicontinuous on * a.e.  by Lemma 3. Thus
 > 0 there exists a > 0 such that * , '   ,

< | ( , ) ( , ) |< ,   . . ,   .' '
n nif then A A a e n        V V    (5.8)

Let = { : < }'
'D

     , for *'  . Then 'D


, *'  , forms an open covering of

* . But * is compact, hence there is a finite subcovering '
j

D


, = 1, ,j m which

covers * . Let * be an arbitrary point in * . Then for some = 1, ,j m , *
'
j

D


  .

Hence, * <'
j    . Thus by (5.8)

*| ( , ) ( , ) |< ,  . . ,   .'
n n jA A a e n    V V  

That is,
*( , ) < ( , ) < ( , ) ,  . . ,' '

n j n n jA A A a e n       V V V  
which implies that

*

1 1
( , ) < ( , ) < ( , ) ,  . . ,   .maxmin ' '

n j n n j
j m j m

A A A a e n    
   

   V V V  

Since, * is arbitrary, we have
*

* *1 1
( , ) < { ( , )} < ( , ) ,  . . ,   .maxmin inf' '

n j n n j
j m j m

A A A a e n


    
   

   


V V V  

Now take liminf of all three parts as n . Since the functions min and max are
continuous, we have

*

* *
0 { ( , )} 0   . .lim inf inf n

n
A a s


  


   


V

Since  was arbitrary, we have ** *{ ( , )} = 0  . .lim inf inf nn A a s   V The proof is
complete.
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