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Abstract
In the present paper we define a generalized measure of discrimination between two past lifetime
distributions of a system. We also characterize a propotional reversed hazard model and study its
important properties.

1.   Introduction
Ebrahimi and Pellerey (1995) and Ebrahimi (1996) have opined that Shannon’s
Information measure is a suitable tool to measure the uncertainty related to
random lifetime distributions and their reliabilities.

Let X and Y be absolutely continuous non–negative honest random variables that
describe the lifetime of two items .We denote by f(t), F(t) and )(tF 1-F(t) the
probability density function (p.d.f.), the cumulative distribution function (c.d.f.),
and the survival function of X, respectively. Further we denote g(t) ,G(t) and

)(tG the corresponding functions of Y. Moreover, Let )()()( xFxfxX  and
)()()( xGxgxy  be the hazard rate functions of X and Y, respectively, whereas
)()()( xFxfxX  and )()()( xGxgxY  will denote their reversed hazard rate

functions. Here we may assume that densities f(t) and g(t) have support (0,+ ∞).

As an information distance between F and G, Kullback and Leibler (1951)
proposed the following discrimination measure, also known as relative entropy of
X and Y.





0

, )()(log)()( dxxgxfxftI YX , (1.1)

where ‘log’ denotes natural logarithm. Distance (1.1) is shift and scale invariant.
It is also known as the relative entropy, or the directed information distance
between X and Y. Kullback (1959) strongly propogated its use in hypothesis
testing and model evaluation. Since then it has been widely used in statistics and
economics.
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Furthermore, 0, YXI is not ‘a metric’, as it does not satisfy the triangle inequality
and is asymmetric. A symmetrized version of YXI , introduced in Kullback and
Leibler (1951) is defined by

.
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)(log))()((

ˆ

0

,,,








dx
xg
xfxgxf

III XYYXYX

(1.2)

In survival analysis and in life testing the current age of the systems under
consideration is known and so it is taken in to account when two systems are
compared this can be done by replacing X and Y by the distributions of
corresponding residual lifetimes.

Accordingly, Ebrahimi and Kirmani (1996a) have defined the Kullback –Leibler
discrimination information of X and Y at time t by





t

YX xd
xGxg
xFxf

tF
xftI )(

)()(
)()(log

)(
)()(, ,t>0.                              (1.3)

Thus, analogous to (1.1), )(, tI YX identifies with the relative entropy of ][ tXtX 

and ].[ tYtY  Information measure (1.3) is useful to compare the residual
lifetimes of two items that have both survival up to time t.

Crescenzo and Longobardi (2004) have defined another information measure
)(, tI YX dual to (1.3) in the sense that it is an information distance between the

past lives ][ tXX  and ][ tYY  . It is defined as follows


t

YX dx
tGxg
tFxf

tF
xftI

0
, ,

)()(
)()(log

)(
)()( t>0. (1.4)

They called (1.4) as measure of discrimination between past life time
distributions.

Given that at time t, two items have been found to be failing, )(, tI YX measures the
discrepancy between their past lives, where 0)(, tI YX . From (1.4), we have
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)(log
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We can write (1.4) in another way as given below:

,

0

( ) 1 ( )( ) log ( ) log , 0.
( ) ( ) ( )

t

X Y
G t f xI t f x dx t
F t F t g x

   (1.6)

The measure (1.4) can be generalized in many ways. Here we study parametric
generalization by introducing a parameter β in section 2.Thus we get a class of
discrimination measures of which (1.4) is a particular case. New generalized
measure has more flexibility in application due to infinite values of β. This has
illustrated in section 3 by ploting graphs for different values of β. In section 4 we
have studied characterization of proportional reversed hazard model.

2. A Generalized Measure of Discrimination

As we have mentioned earlier that measure (1.4) can be generalized in a number
of ways.  However, here we consider the following generalization
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0,1   (2.1)

It may be noted that (2.1) reduces to (1.4), when .1 So we may call (2.1) the
discrimination information measure of degree β.

Consequently, the measure (1.5) can also be generalized as follows:
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Next we obtain some bounds of )(YX, tI


using the term “increasing” and
“decreasing” in non-strict sense. We also make use of the notions of stochastic
orders and refer to Shaked and Shanthikumar (1994) for definition and basic
results. As particular cases our results reduce to the results due to Crescenzo
and Longobardi (2003).

Theorem 2.1 If
)(
)(
tg
tf is increasing in t>0, i.e. ,YX lr then
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Proof: From the measure (2.1), we have
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Due to increasing of
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When
)(
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tf is decreasing the proof is similar.

Again from (2.1), we have
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3. Applications
Let X and Y have weighted exponential distributions with rates λ and μ
respectively and with weight function )(t . Their densities are given by
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where h(.) denotes the Laplace transform of :)(t
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Solving the measure (1.6) and (3.1), Crescenzo and Longobadi expressed the
discrimination measure of the past lives for   as follows
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Next we generalize measure (3.2) in the following way:
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It may be noted that (3.3) reduces to (3.2) when 1 .

Example 3.1 Let X and Y be Erlang distributed, with scale parameter λ and μ
respectively, with the common shape parameter n. Hence they posses densities
given by (3.1) , where .)( 1 ntt and )1()(  nh  ! n .
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If we put ,
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This is clearly indicated in the Figure 3.1 and 3.2

Figure 3.1: The discrimination measure (3.4) for μ> (from bottom to top)
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Figure 3.2: The discrimination measure (3.4) for μ<

The following example shows that discrimination measure )(, tI YX
 is not

necessarily monotone.

Example 3.2 Let
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be the c.d.f.’s of  X and Y . From Figure 3.3 we see that )(, tI YX
 is not monotone

for all )2,0(t .
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Figure 3.3 The discrimination measure of past lives of example (3.2)
is plotted for t>0

4. Characterization of Proportional Reversed Hazards Model
Let X be a random life time i.e. a non-negative absolutely continuous random
variable with probability density function f(x), cumulative distribution function F(x)
and survival function )(1)( xFxF  .Suppose that (0,b) is the interval of support
of F(x), with  b0 . Then we have following definition:
Definition 4.1: Hazard rate function of X

,,
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)()(log)( bx
xF
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dx
dxX  is hazard rate function of X and

.0,
)(
)()(log)(  x

xF
xfxF

dx
dxX

is reversed hazard rate function of X.

The proportional reversed hazard rate model is expressed by a non-negative
absolutely continuous random variable Y whose distribution is the power of the
distribution function of X as given below:

  ,,)()( RxxFxG   (4.1)
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where  is a positive real number. Probability density and hazard rate functions
of Y are, respectively,

  RxxfxFxG
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dxgY   ),()()()( 1 (4.2(a))
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This function has a probabilistic interpretation when  is a positive integer. From
(4.1) and (4.2(a)) it follows that the reversed hazard rate function of Y is given by

.0),(.
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)()(  xx
xG
xgx XY 

Example 4.1: Consider a parallel system of n components having i.i.d. life time
....,.........2,1, niYi  characterized by the p.d.f. g(x) and c.d.f. G(x).The lifetime of

the system is then  ,........,,.........,max 21 nYYYX  with p.d.f. )()()( 1 xgxnGxf n

and c.d.f. ).()( xGxF n Hence X and iY satisfy the proportional reversed hazard
model.

From measure (2.2), for t>0 and i=1,2,3,………………, we have
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Solving above equation we have
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For 1 , (4.3) reduces to

.)1(log)(, n
nntI YX


 (4.4)

Example 4.2: Let us consider a parallel system of n components characterized
by i.i.d. lifetime niX i ........,.........3,2,1,  and let  nXXXY ......,,.........,max 21 be
the lifetime of the p.d.f. of Xi. The c.d.f. of Y is )()( xFxG n and its

)().()( 1 xfxnFxg n .

Thus we have
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For β→1 (4.5) reduces to

.log1)1(log)(, nnnntI YX  (4.6)

It may be noted that if we let
m

n 1
 in (4.6), we get (4.4).this proves that the

relevant connection between X and Yare proportional with factor n, while this
property is not satisfied by their hazard rate functions except n=1.

Conclusion
The directed divergence or discrimination measure or relative entropy has an
analogus with residual life in reliability theory. In the present paper we have
studied a generalized discrimination measure of past life distribution of a system
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at time t and have characterized a proportional reversed hazard model. This
study has a connection with Residual failure rate in survival analysis.
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