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Abstract

The Best linear unbiased estimators of Buys-Ballot estimates when trend-cycle component is
linear are discussed in this paper. The estimates are those proposed by Iwueze and Nwogu
(2004). Discussed are the Chain Based Estimation method and the Fixed Based Estimation
method. The variates for the Chain Based Estimation method were found to have constant mean
and variance but are correlated with only one significant autocorrelation coefficient at lag one.
The variates for the Fixed Based Estimation method were found to have constant mean, non-
constant variance but with constant autocorrelation coefficient at all lags. Best Linear unbiased
estimators of the slope and intercept for the Chain Based Estimation variates only were derived
since they exhibit stationarity. Numerical examples were used to illustrate the methods.

Keywords: Best linear unbiased Estimator, Buys-Ballot derived variables,
stationarity, Minimum variance, Moving Average Process of order one.

Introduction

Iwueze and Nwogu (2004) developed two methods of estimating the parameters
of a linear trend-cycle component from the periodic averages of the Buys-Ballot
Table (Table 1). The procedure was initially developed for short period series in
which the trend-cycle component (Mt ) is jointly estimated and can be

represented by a linear equation:
M, =a+bt,t=1,2,...,n (1.1)

t

The two alternative methods are: (i) the Chain Base Estimation (CBE) method
which computes the slope from the relative periodic average changes and (ii) the
Fixed Base Estimation (FBE) method which computes the slope using the first
period as the base period for the periodic average changes.
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For short series in which the trend and cyclical components are jointly estimated,
the two contending models for time series decomposition are the additive and
multiplicative models (Chatfield (2004), Kendall and Ord (1990)).

Additive model: X, =M, +8S, +e, (1.2)

Multiplicative model: X, =M, S, e, (1.3)

Where for time t, X, is the observed series; S, is the seasonal component with
the property that Sticiys;=S;,i=1,2,...,m, and e, is the irregular or random

component. Results obtained by lwueze and Nwogu (2004) for the additive and
multiplicative models are summarized in Table 2.

s+ ]

It is clear from Table 2 that the trend-cycle estimates are the same for both the
additive and multiplicative models. We can also note from Table 2 that estimates
of the intercept (a) and the seasonal indices (Sj ,i=1,2, .., m) depend on the

estimate of the slope (b). This paper will therefore concentrate on the Best
Linear Unbiased Estimator (BLUE) of the slope (b) parameter. For the additive
model (1.2), it is assumed that the irregular/error component e, is the Gaussian

N(O, c; ) white noise, while for the multiplicative model (1.3), e, is the Gaussian

N(l, G’ ) white noise. For the additive model (1.2), the assumption is that the

sum of the seasonal component over a complete period is zero (Z S, = 0],
j=0

while for the multiplicative model (1.3), the sum of the seasonal component over

a complete period is s [Z S; = sJ.
j=0

The multiplicative model (1.3) can be linearized to become the additive model
(1.4).

* *

X, =M, +S, +e,,t=1,2,...,n (1.4)

where X, =log X ,,M, =log,M,,S, =log.S,,e, =log,e,. The behaviour of
M| =log, M, when M, is represented by a linear equation (1.1) have been

studied by Iwueze and Akpanta (2007) and it was shown that for
-0.01 < b/a <0.06, M;

. could still be represented by a straight line

M| =a+Bt, with a=log,a and B=b/a. The behaviour of S| =log,S, to

achieve Z S; =s have been studied by Iwueze et al (2008). The behaviour of
j=0

e, =log_e, for ef~N(0,cz) when et~N(1,02) have been studied by
Iwueze (2007) and it was shown that the logarithmic transform of the left-
truncated N(l, c’ ) distribution is approximately normal when o < 0.1. It follows

184 Pak.j.stat.oper.res. Vol.VIl No.2 2011 pp183-198



Best Linear Unbiased Estimate Using Buys-Ballot Procedure When Trend-Cycle Component is Linear

that we can study the additive model (1.1) and apply the results obtain to the
multiplicative model after linearization.

The main objective of this paper is to obtain the BLUE of the slope parameter for
the additive model. Section 2 presents the covariance structure of CBE derived
variables, while Section 3 presents the covariance structure of the FBE derived
variables. Section 4 contains the determination of the BLUE for the CBE
estimate of the slope parameter. Section 5 presents the simple average of the
CBE derived variables, Section 6 contains the numerical examples while Section
7 contains the concluding remarks.

Table 1: Buys-Ballot Table

Season
p 1 2 J S Ti. Xi 6i.
1 Xl X2 Xj Xs T1 i]_ é\Yl.
2 Xs+l Xs+2 XS+_] X2s T2 iz' c,\32.
3 2s + 1 2s + 2 2s +j X3s T3. X3, 634
1 X(l—l)s+l X(l—l)s+2 X( —l)S+_] X(l—l)S+S Tl i. 61
m X(m ])s+1 X(m 1)s+2 X(m—l)s+] Xms m. imA 6m
T.j T.l T.Z T_] T.s T
X.j X.l X.Z X4j X.s X
& 5, 5, & 5 G
S - rI!1 1 S
T1 = X( ~1)s+j > 1:1’2’ , M, Xi.: S :gZ X( —1)s+j 121’2’ > M,
j=1 j=1
TJ=ZX( *1)S+_| H J 12: » S
i=1
T,
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Jn_lz > (X0 X )

Table 2: Buys-Ballot estimates for linear trend.

Additive model (1.2) Multiplicative model (1.3)
T as+b7[(21—l)s+l] as+b7[(21—1)s+1]
X a+g[(2i—l)s+l] a+g[(2i—1)s+l]
T, ma+me[Zj+n—s]+mSj {ma+m7b(2j+n—s)}sj
X a+£[2j+n—s]+sj {a+h(2j+n—s)}sj
2 2
T. na+n—b[n+1] na+ﬂ[n+l]
2 2
X, a+g[n+l] a+g[n+1]
B(CBE) XmA_Xl. XmA_Xl.
n-s n-—s
B(FBE) 5(X, -X 1 (X -X,
n—slz_;( 1—1 J n—siz_;( 1—1 ]
! X - g[n+1] x_g[nﬂ]
S - ~ b ~ /l< . b
: XJ—{X +E(2]—S—1):| X,j/{x +2(2J—S—1):|

2. Covariance Analysis of the CBE Derived Variables: Additive Model

Under the CBE method, the estimate of the slope (b) was calculated as the
average of b ,i=1,2, — 1 given by lwueze and Nwogu (2004) as:
B X(i) — X,

ble) = Li=1,2,..,m—-1 (2.1)
S

As noted earlier for the additive model, the irreqular components are
independently, identically and normally distributed with mean zero and common
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2 2
variance o; =c’. Under this assumption, €, ~ N(O, G—], e, ~ N(O,G—],
m

S
2
6,_~N(0,G—j.
n

Using (1.2), the periodic averages are given by

X, = a+g[(2i—l)s+1]+éi4,i:1,2, . (2.2)

1.

Hence, our variable of interest is now given by

Bl :é(y(m)‘ ~X, )=b +§(é(m)_ ~%, )i=1,2,.,m-1 (2.3)

1

Therefore, the expected value and variance of bf” are

E(61)=B(b)+ (E(e(.)) -7 )=b 24)
Var(Bgc) )= Gggc) = E[(ch) -b )2 } =SL2E[(E(1+1). e )2]
_ 20 (2.5)
S

The covariance between bi(") and b§.°) is

A

ol 55) -, <l (51 - el

v
S——"
P—
o
o —
o
N
—
o
o —
(e]
N
S——"
| I

S
= L6 e — S, ~EE G 468, ] (26
- 52 Ci+1).C(j+1) (i+1).€j. =€iC(j41) T €, ¢ (2.6)

For j=i+1,

-1_(_, -1( o2 -c’

G.J=S—2E(e(1+1))=s—2(Tj= 3 (2.7)

For j=i-1,
-1 (_2)_—1 c’ _—02 28
AR ) Sl 29)

For j=ixk,k>1,

c,;=0 (2.9)
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In summary, let R(k):cov(ﬁff),ﬁgflk).) and p, =R(k)/R(0). The results
(2.5) through (2.9) can be summarized as follows:

267 /s, k=0
R(k)=1-02/s’, k=+I1 (2.10)
0, k>1
I, k=0
p,=1-1/2,k=+1 (2.11)
0, k>1

We have shown that the sequence, Bf°),i:1,2,...,m—1, of CBE derived

variables have the covariance structure of a moving average process of order

one (MA(1)). For more details on MA(1) processes, see Box et al, (1994),
Chatfield (2004).

3. Covariance Analysis of the FBE Derived Variables: Additive Model

Under the FBE method, the estimate of the slope (b) was calculated as the

average of Bff), i=1,2,..,m—1 given by lwueze and Nwogu (2004) as:

X(i+l). _XI. i=1
(i -1 )s ’

Using (1.2),

bt = 2, .., m—1 (3.1)

. Xy —X €. —¢€
(Y Sl (L0 S AP G2 D S E S U T | (3.2)

' (i-1)s (i-1)s

Hence, the expected value and variance of b!") are

e EEn —8 )= 33)

2
) (i_zf)w oo
o 11,57) =, =519 - (50 )y -5 )
B
= (i _1)(lj_1)sz E[(E(i+1). —-e )(E(j+1). e, )]
= iz 1)(1J s E[E(Hl).é(ﬁl) —€(i,1) €1 — €. €. +Eﬁ] (3.5)
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For j=i+k,
1 _, c’
- E - 36
T ey ey R ey 59)
Hence, the autocovariance and autocorrelation structures are:
2
(' 2;2 3,1<=0
1— S
R(k)= 2 (3.7)
(e}
,k#0
G-nG-ns 7
1, k=0
pk:{l/Z, k=+1,42, .. (38)

We have shown that the sequence, 65”,i=1,2,...,m—1, of FBE derived

variables are not stationary and their average as an estimate of slope (b), will
not give a reliable estimate in its present state.

4. Best linear unbiased estimate of slope (b) using the CBE derived
variables

The CBE derived variables (ch),izl,z,...,m—l) have been shown to be

stationary and can be used for estimation, while the FBE derived variables

(Bff), i=1,2,....,m-— 1) are not stationary and estimates based on them will not

be reliable. The sequence of CBE derived random variables

Bi“), i=1,2,..,m-1, are found to have the covariance structure of a first-order

moving average process (MA(1) process) with the autocorrelation function given
by (2.11).

Let a,,a,,,a be any set of real numbers. A linear estimate of the mean

m -1

b= E(Bf”) is given by

m -1
T=Zaib§°) (4.1)
t=1

If T is unbiased, we obtain that

E(T):ElaiE(BEC)):Hilaib:bnilai: (4.2)
t=1 t=1 t=1

T is unbiased if and only if

m-1

Ya =1 (4.3)
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The variance of T is given by
m-—1
var(T) = ZafVar(Yi)+2ZZaiajcov(Yi,Yj) (4.4)
i=1 i < J

For the second order stationary sequence of random variables
b{*),i=1,2,..,m—1, with autocorrelation structure (2.11), var(T) can be
written as

Var(T)=R(O)Za?+2R(1)Zaiai+] (4.5)

=[2G32j{mz_lai2_mz_2aiai+1} (4.6)

Linear unbiased estimates of b that have minimum variance (among all linear
unbiased estimates) are called best linear unbiased estimates (BLUE.s). Let

m-1 m-2
S(a)=>ai- Y aa,,, (4.7)
i=1 i=1

From (4.6), min(var(T))=R(0)min(S(a)). Hence, the BLUE of b is obtained
if we choose a,,a,,,a, , that minimize S(a) with respect to the constraint

m — 1
D a, =1. However, when p, =0, forallk, a; = ! (see Rohatgi (1976)).
t=1

m — 1
As an example of the minimization of (4.7) subject to the constraint

m-1

a,=1,welet m-1=10= m=11. Equation (4.7) reduces to

i=1

a2 2 2 2 2 2 2 2 2
S(a)—a1 +a;+a;+a,+a;+a, +a;+a;+a,
+ (1 y
-8, 7a, "33 -8, 35 a5 —38; —ad3 — 8y

—a,a,—a,a;—a;a,—a,a; —asa, —a,a,; —aga,

—ag(l—al—az—a3—a4—a5—a6—a7—a8—a9) (4.8)
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By equating 8S(a)/8aj =0, we obtain the system of linear equations given in
(4.9).
4a, + a,+2a;+2a,+2a,+2a,+2a,+2a,+3a,=2

a, +4a,+ a; +2a,+2a,+2a,+2a,+2a,+3a,=2
2a, + a, +4a,+ a, +2a,+2a,+2a,+2a,+3a,=2
2a,+2a,+ a, +4a,+ a; +2a,+2a,+2a,+3a,=2
2a,+2a,+2a,+a, +4a,+ a, +2a,+2a,+3a,=2 (4.9)
2a,+2a,+2a,+2a,+ a; +4a,+ a, +2a, +3a,=2
2a,+2a,+2a,+2a,+2a,+a, +4a,+a, +3a,=2
2a, +2a,+2a,+2a,+2a,+2a,+ a, +4a,+2a,=2

3a, +3a, +3a,+3a, +3a, +3a,+3a, +2a, +6a,=3

We put the system of linear equations (4.9) in matrix form, to obtain

-1

412222223 2
4, 141222223 2
a, 214122223 2
a, 221412223 2
a, = 222141223 2 (4.10)
a, 222214123 2
a. 222221413 2
a, 222222142 2
a, 333333326 3

Evaluating (4.10) with a,,=1-a, -a, -a,-a, —a;,—-a,—a, —a; —a,, We
obtained the following weights:
a, =0.046; a, =0.082a,=0.109;a, =0.127;a, =0.136; a, = 0.127;

a, =0.109; a, =0.082; a,, = 0.046; S(a)=0.005.
Given in Table 3 are the weights for m =3, 4, ..., 21 (m —1=2, 3, ..., 20). The plot

of S(a) against m is given in Figure 1. Also illustrated in Figure 1 is the fact that
S(a) follows an exponential distribution (Draper and Smith, 1999) given by

S(a): e0.286270.7156m+0.0177m2 : R2 — 099 (411)
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S(a)

0.3 -
0.25
Original
0.2
Exponential: S(a ) — @ 02862 - 0.7156m + 0.0177m? ‘R 2099
015 7 Quadratic:S(a ) = 0.2413 - 0.0354m + 0.0012m” ; R * = 0.69
0.1 -
0.05 -
0 T T T T 1
5 10 15 20 25™
-OBS-?
Figure 1: Plot of S(a) against m
Table 3: Sample sizes (m) and their corresponding weights
(a,,i=1,2,..,m—-1)
Sample size =m
& 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21
a, 0.500 | 0.300 | 0.200 | 0.143 | 0.107 | 0.083 | 0.067 | 0.055 | 0.046 | 0.039 | 0.034 | 0.029 | 0.025 | 0.022 | 0.019 | 0.017 | 0.016 | 0.014 | 0.013
a 0.500 | 0.400 | 0.300 | 0.229 | 0.179 | 0.143 | 0.117 | 0.097 | 0.082 | 0.070 | 0.060 | 0.052 | 0.046 | 0.041 | 0.037 | 0.033 | 0.030 | 0.027 | 0.025
as 0.300 | 0.300 | 0.257 | 0.214 | 0.179 | 0.150 | 0.127 | 0.109 | 0.094 | 0.082 | 0.072 | 0.064 | 0.057 | 0.052 | 0.046 | 0.042 | 0.038 | 0.035
ay 0.200 | 0.229 | 0.214 | 0.190 | 0.167 | 0.145 | 0.127 | 0.112 | 0.099 | 0.088 | 0.079 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048 | 0.044
as 0.143 | 0.179 | 0.179 | 0.167 | 0.151 | 0.136 | 0.122 | 0.110 | 0.099 | 0.089 | 0.081 | 0.074 | 0.067 | 0.061 | 0.056 | 0.052
ap 0.107 | 0.143 | 0.150 | 0.146 | 0.136 | 0.126 | 0.115 | 0.106 | 0.096 | 0.088 | 0.080 | 0.074 | 0.068 | 0.063 | 0.058
ar 0.083 | 0.117 | 0.127 | 0.127 | 0.122 | 0.115 | 0.108 | 0.101 | 0.093 | 0.086 | 0.080 | 0.074 | 0.068 | 0.064
ag 0.067 | 0.097 | 0.109 | 0.112 [ 0.110 | 0.106 | 0.101 | 0.094 | 0.088 | 0.083 | 0.077 | 0.073 | 0.068
ag 0.054 | 0.082 | 0.094 | 0.099 | 0.099 | 0.096 | 0.093 | 0.088 | 0.084 | 0.079 | 0.075 | 0.070
a 0.046 | 0.070 | 0.082 | 0.088 | 0.089 | 0.088 | 0.086 | 0.083 | 0.079 | 0.076 | 0.071
a 0.039 | 0.060 | 0.072 | 0.079 | 0.081 | 0.080 | 0.080 | 0.077 | 0.075 | 0.071
ap 0.034 | 0.052 | 0.064 | 0.071 | 0.074 | 0.074 | 0.074 | 0.073 | 0.070
as 0.029 | 0.046 | 0.057 | 0.064 | 0.067 | 0.068 | 0.068 | 0.068
Ay 0.025 | 0.041 | 0.052 | 0.058 | 0.061 | 0.063 | 0.064
ass 0.022 | 0.037 | 0.046 | 0.053 | 0.056 | 0.058
ae 0.019 | 0.033 | 0.042 | 0.048 | 0.052
ay 0.017 | 0.030 | 0.038 | 0.044
asg 0.016 | 0.027 | 0.035
ag 0.014 | 0.025
ax 0.013
S(a) | 0.250 | 0.100 | 0.050 | 0.029 | 0.018 | 0.012 | 0.008 | 0.006 | 0.005 | 0.004 | 0.003 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
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5. Simple Average of the CBE Derived Variables

Iwueze et al. (2010) discussed the properties of the estimator based on the
simple average (SAE: Simple Average Estimator) of the derived CBE variables
given by

SO A I
b —(m_l)Zbi (5.1)

i=2

The mean and variance of (5.1) are:
E(6¢))=b (5.2)

)t - g [ Salbio o2 Sl b0

w3 )23
m — S S
(from (2.5) and (2.7))
2% i imeapo L [29 (5.3)
(m—l)zs3 (m—l)2 s’ '

The SA estimate (5.1) is also a linear unbiased estimator of the slope (b)
parameter.

Comparing (4.6) and (5.3), we note that the difference between the variances of
m -1

m -2
the SAE and the BLUE lies in the difference between S(a)= > a} - > a a,,,
i=1 i=1

for the BLUE and ﬁ for the SAE. Figure 2 illustrates the differences.
m p—

The variance of the intercept (a ) is given in lwueze et al. (2010) as

Var(é):G—2+(n;1j Var(f)) (5.4)

n
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m n m -1 n
where b=b<°>:( ! I)be” for the SAE and b=T= > a,b(°) for the
m-1)i=; t=1

2
BLUE. At m=3, S(a) = [%) so that variances of the estimates of the slope
are the same for BLUE and SAE

0.3 5@
m-1 m-2
0.25 - BLUE: S(a)= > a; - > a,a,,,
i=1 i=1
0.2 1
) 1
o5 - SAE: EE
0.1 -
0.05 - .
0 T T L | 1
0 5 10 15 20 25
Figure 2: Plot of S(a) and (;1)2 against m
m_

6. Empirical Examples

The first example are simulations of n =4m (m =8, 11, ..., 18) observations from
X, =a+bt+S, +e, with a=10,b=02,S, =-15, S,=25,5,=35,
S,=-45and e, ~N(0,1). The properties of the BLUE were also determined

and compared with those from the Least Squares Estimation (LSE) method and
Simple Average Estimation (SAE) method of the Buys-Ballot derived variables.

As Table 4 shows, BLUE recovers the values of the slope and intercept used in
the simulation better than the other two methods. The variances of the estimates
of the slope and intercept are also smaller for the BLUE than for the other two
methods.

The autocorrelation function (ac.f) of the residuals obtained after decomposition
using the LSE, SAE and BLUE methods were used to confirm the adequacy of
the fitted models. Diagnostic checks on the residuals are discussed in Box et al.
(1994).
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The second example is the 32 consecutive quarters of U.S beer production, in
millions of barrels, from first quarter of 1975 to the fourth quarter of 1982, and is
listed as Series W10 in Wei (1990). In order to assess the forecasting
performance of our models, we use only the first 30 observations of the series for
model construction.

The estimates of the parameters using Least Squares Estimation method (LSE)
are again determined and compared with those from the BLUE and SAE
computed from the CBE derived variables. The computational procedure for the
slope (b) is laid out in Table 5 while Table 6 gives the summary of the estimates.

Table 4: Summary of estimates of LSE, BLUE and SAE
m | Method [ 3 5 & 5, S, S, S, S, G

a

LSE 1.309 | 0.181 | 1.261 | 0.067 | -1.322 | 2.534 | 3.439 | -4.651 | 0.996
SAE 1.490 | 0.170 | 0.459 | 0.025 | -1.339 | 2.529 | 3.444 | -4.634 | 1.029
8 |BLUE |1.084 ] 0.195|0.361 | 0.019 | -1.302 | 2.541 | 3.432 | -4.671 | 0.977
LSE 1.174 |1 0.191 | 1.196 | 0.056 | -1.538 | 3.086 | 3.108 | -4.656 | 0.875
SAE 1.185| 0.190 | 0.413 | 0.021 | -1.539 | 3.086 | 3.108 | -4.655 | 0.876
9 |BLUE |0.965 | 0.202 | 0.313 | 0.015 | -1.521 | 3.092 | 3.102 | -4.673 | 0.861
LSE 1.170 | 0.192 | 1.106 | 0.047 | -1.347 | 2.403 | 3.518 | -4.573 | 0.999
SAE 0.615 | 0.219 | 0.185 | 0.020 | -1.307 | 2.416 | 3.504 | -4.614 | 1.019
10 | BLUE | 1.006 | 0.200 | 0.170 | 0.014 | -1.515 | 2.347 | 3.574 | -4.406 | 1.004
LSE 1.666 | 0.193 | 1.109 | 0.043 | -1.258 | 2.593 | 3.638 | -4.973 | 0.963
SAE 0.762 | 0.211 | 0.411 | 0.017 | -1.231 | 2.602 | 3.629 | -5.000 | 0.966
11 | BLUE ]0.987 | 0.201 | 0.306 | 0.012 | -1.246 | 2.597 | 3.634 | -4.985 | 0.957
LSE 1.481 | 0.180 | 0.961 | 0.034 | -1.288 | 2.180 | 3.476 | -4.368 | 0.960
SAE 1.478 | 0.181 | 0.403 | 0.015 | -1.288 | 2.180 | 3.476 | -4.368 | 0.960
12 | BLUE ]1.360 | 0.185 | 0.296 | 0.011 | -1.281 | 2.183 | 3.473 | -4.375 | 0.958
LSE 1.199 [ 0.193 | 1.026 | 0.034 | -1.273 | 2.683 | 3.644 | -5.054 | 0.947
SAE 1.371 | 0.186 | 0.398 | 0.014 | -1.283 | 2.680 | 3.648 | -5.045 | 0.961
13 | BLUE [1.056 | 0.198 | 0.524 | 0.009 | -1.265 | 2.686 | 3.642 | -5.062 | 0.943
LSE 0.970 | 0.201 | 0.926 | 0.028 | -1.393 | 2.622 | 3.363 | -4.592 | 0.992
SAE 0.726 | 0.210 | 0.407 | 0.013 | -1.380 | 2.627 | 3.358 | -4.605 | 0.992
14 | BLUE | 0.852 | 0.205 | 0.259 | 0.008 | -1.387 | 2.625 | 3.361 | -4.598 | 0.990
LSE 1.265 | 0.191 | 0.847 | 0.024 | -1.465 | 2.393 | 3.308 | -4.236 | 0.982
SAE 0.803 | 0.206 | 0.407 | 0.013 | -1.443 | 2.401 | 3.301 | -4.259 | 1.006
15 | BLUE [1.147 [ 0.195 | 0.268 | 0.008 | -1.460 | 2.395 | 3.306 | -4.241 | 0.962
LSE 1.166 | 0.195 | 0.867 | 0.023 | -1.114 | 2.520 | 3.375 | -4.781 | 0.969
SAE 1.358 | 0.189 | 0.396 | 0.012 | -1.123 | 2.518 | 3.377 | -4.772 | 0.983
16 | BLUE [ 1.036 | 0.199 | 0.213 | 0.005 | -1.109 | 2.523 | 3.373 | -4.787 | 0.967
LSE 1.130 | 0.193 | 0.848 | 0.021 | -1.375 | 2.465 | 3.496 | -4.586 | 1.144
SAE 0.770 | 0.203 | 0.461 | 0.013 | -1.359 | 2.470 | 3.490 | -4.601 | 1.152
17 | BLUE [1.034 | 0.196 | 0.260 | 0.006 | -1.370 | 2.466 | 3.494 | -4.590 | 1.142
LSE 1.124 | 0.197 | 0.743 | 0.018 | -1.424 | 2.280 | 3.217 | -4.073 | 0.960
SAE 0.919 | 1.044 | 0.382 | 0.010 | -1.415 | 2.283 | 3.213 | -4.081 | 0.962
18 | BLUE [1.044 | 0.199 | 0.226 | 0.005 | -1.420 | 2.282 | 3.215 | -4.077 | 0.959
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Table 5: Buys-ballot table for U.S. beer production

Quarter
Il 1

44.60 | 44.15
44.63 | 46.95
49.72 | 44.49
49.07 | 48.98
50.09 | 48.42
53.44 | 53.00

—_ A A

X. o .

40.15 ] 4.88
41.17 | 5.43
42.60 | 5.76
44.77 | 4.97
46.05 | 3.95
48.77 | 5.35

v

35.72
36.90
36.54
39.59
41.39
42.52

Year |

1975 | 36.14
1976 | 36.19
1977 | 39.66
1978 | 41.44
1979 | 44.29
1980 | 46.11

0.083
0.143
0.179
0.190
0.179
0.143

1981

44.61

55.18

52.24

41.66

48.42

6.34

0

.083

47.84

54.27

51.06

4.55 | -

1982

J

42.04

50.13

48.32

39.19

44.99

6

J

4.42

4.07

3.46

2.78

566

Summary of estimates of LSE, BLUE and SAE for U. S beer

production

Table 6:

Method | a

A A

b C.

Gy

sl

SZ

SS

S,

LSE
SAE

BLUE

39.099
38.955
38.885

0.380
0.390
0.394

1.790
0.564
0.461

0.101
0.033
0.025

-2.692
-2.297
-2.291

5.018
5.403
5.405

3.592
3.207

3.205

-5.918
-6.313
-6.319

G
1.244
1.
1.

311

Table 7:

Comparison of the forecasts between models

Lead
time

Actual
Value

Wei (1990)

LSE

SAE

BLUE

Forecast
Value

Error

Forecast
Value

Error

Forecast
Value

Error

Forecast
Value

Error

1

52.31

54.38

-2.07

54.48

-2.17

54.24

-1.93

54.31

-2.00

2

41.83

45.37

-3.54

45.35

-3.52

45.11

-3.28

45.18

-3.35

MPE
MSE
MAE

MAPE

-6.2%
8.4
2.8
6.2%

-6.3%
8.6
29

6.3%

-5.8%
7.2
2.6
5.8%

-5.9%
7.6
2.7
5.9%

Wei (1990), ignoring the stochastic trend in the series, used 30 observations of
the series for Integrated Autoregressive Moving Average (ARIMA) model
construction. Based on the forecasting performance of his models, he settled on
the model

( Je

(1-B*)X, =149 +
(£0.09)
The one step ahead and two step ahead forecasts, X,,(¢)for / =1and 2, from
the forecast origin 30 are calculated for each estimation method. The forecast
errors and the corresponding summary statistics used by Wei (1990) are shown
in Table 7. With respect to Table 7, MPE is the Mean Percentage Error, MSE is
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1- 087 B* (6.1)

(£0.16)

with 6° = 2.39.
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the Mean Square Error, MAE is the Mean Absolute Error and MAPE is the Mean
Absolute Percentage Error as defined in Wei (1990).

The results of Table 7 indicate that the SAE and BLUE give approximate results
that are better than those given by the LSE and ARIMA in terms of forecasts.
This example illustrates the fact that sometimes a simple descriptive model
computed from the Buys-Ballot procedure may be preferred to the more
complicated ARIMA and LSE methods in a series were all the methods are
adequate in terms of the residuals.

7. Concluding Remarks

This study has examined the Best Linear Unbiased Estimator (BLUE) of the
slope (b) of a linear trend-cycle component of time series computed from the
Buys-Ballot derived variables defined by Iwueze and Nwogu (2004). The
emphasis on the slope is based on the fact that estimates of the other
parameters (intercept and seasonal indices) depend on it. The properties of the
BLUE were also determined and compared with those from the Least Squares
Estimation method (LSE) and Simple Average method (SAE) of the Buys-Ballot
derived variables.

The results show that of the two derived variables (CBE and FBE), only the CBE
derived variable were found to be stationary (with constant mean and variance)
but are correlated with only one significant autocorrelation coefficient at lag one.
The derived variable from the FBE are non-stationary with constant
autocorrelation coefficient at all lags. Hence, they are considered incapable, in
their present state, to give any reliable estimate.

The variance of the BLUE for the slope (b) based on the CBE-derived variables
was shown to depend on the sum of squares and cross-products S(a) of the
weights (ai ) of the derived variables. The values of S(a), in turn, depend on the

number of periods (m).

The variances of the estimates of the slope (the BLUE and SAE) are constant
2

multiples of the variance of b, (22
S

2
J. The multipliers are (Lj for SAE and

m—1

2
S(a) for the BLUE. At m =3, S(a) = (%j so that variances of the estimates of
m—
the slope are the same for BLUE and SAE. For m>3, the variances appear to

decay exponentially as m increased.

The estimate of the slope based on simple average is only a particular case of

the BLUE in which all the weights are equal (i.e, a, = ;J The multipliers of

m —
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2

are, for every m>3, greater for SAE than BLUE. This ensures that the BLUE

3
S

has minimum variance. As a consequence, the variances of the estimates of the
intercept (a) are for every m>3, smaller for the BLUE than for the SAE. These are
clearly supported by the results of the empirical examples shown in Table 4.
Another important result is that (i) for m>3, the error variance is smaller for the
BLUE than for the SAE and LSE and (ii) for most m the estimates of the slope (b)
and intercept (a) from BLUE are closer to the actual values used in the simulation
than those from SAE and LSE.

Therefore, when using Buys-Ballot procedure for time series decomposition, it is
recommended that when trend-cycle component is linear, the BLUE for the slope
computed from the CBE-derived variable be used. This leads to more precise
estimates of time series components.
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