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Abstract  

 
In this paper, a new class of continuous distributions with two extra positive parameters is introduced and is 

called the Type II General Exponential (TIIGE) distribution. Some special models are presented. 

Asymptotics, explicit expressions for the ordinary and incomplete moments, moment residual life, reversed 

residual life, quantile and generating functions and stress-strengh reliability function are derived. 

Characterizations of this family are obtained based on truncated moments, hazard function, conditional 

expectation of certain functions of the random variable are obtained. The performance of the maximum 

likelihood estimators in terms of biases, mean squared errors and confidence interval length is examined by 

means of a simulation study. Two real data sets are used to illustrate the application of the proposed class. 

 

Keywords: Maximum likelihood; Moment; Quantile Function, Order Statistics. 

 

1.Introduction 

Recently, several families of continuous univariate distributions have been constructed by 

extending common families of continuous models. These generalized distributions give 

more flexibility by adding one "or more" parameters to the baseline model. For examble, 

Gupta et al. (1998) proposed the exponentiated-G class, which consists of raising the 

cumulative distribution function (cdf) to a positive power parameter. Many other classes 

can be cited such as the Marshall-Olkin-G family by Marshall and Olkin (1997), the T-X 

family by Alzaatreh et al. (2013), Kumaraswamy transmuted-G by Afify et al. (2016b), 

transmuted geometric-G by Afify et al. (2016a), beta transmuted-H by Afify et al. 

(2016c), Burr X-G by Yousof et al. (2016), The odd Lindley-G family of distributions by 
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Silva et al. (2016), exponentiated transmuted-G family by Merovci et al. (2016), odd-

Burr generalized family by Alizadeh et al. (2016a) the complementary generalized 

transmuted poisson family by Alizadeh et al. (2016b), logistic-X by Tahir et al. (2016a), a 

new Weibull-G by Tahir et al. (2016b), the two-sided power-G class by Korkmaz and 

Genc (2016), the type I half-logistic family by Cordeiro et al. (2016a), the Zografos-

Balakrishnan odd log-logistic family of distributions by Cordeiro et al. (2016b), the 

generalized odd log-logistic family by Cordeiro et al. (2016c), the beta dd log-logistic 

generalized family of distributions by Cordeiro et al. (2016d),  the Kumaraswamy odd 

log-logistic family of distributions by Alizadeh et al. (2016) and  a new generalized odd 

log-logistic family of distributions by Haghbin et al. (2016), among others. 

 

Let 𝑝(𝑡) be the probability density function (pdf) of a random variable 𝑇 ∈ 𝑎, 𝑏] for 

−∞ < 𝑎 < 𝑏 < ∞ and let 𝑊[𝐺(𝑥)] be a function of the cdf of a random variable 𝑋 such 

that 𝑊[𝐺(𝑥)] satisfies the following conditions:  

 (

(𝑖) 𝑊[𝐺(𝑥)] ∈ 𝑎, 𝑏],

(𝑖𝑖) 𝑊[𝐺(𝑥)]differentiable and monotonically non − decreasing

(𝑖𝑖𝑖) 𝑊[𝐺(𝑥)] → 𝑎   as   𝑥 → −∞ and 𝑊[𝐺(𝑥)] → 𝑏   as   𝑥 → ∞.

 (1) 

Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by  

𝐹(𝑥) = ∫
𝑊[𝐺(𝑥)]

𝑎
 𝑝(𝑡) 𝑑𝑡,                           (2) 

where 𝑊[𝐺(𝑥)] satisfies conditions (1). Based on T-X idea, we define the cdf of Type II 

General Exponential (TIIGE) class of distributions by 

𝐹TIIGE(𝑥) = 𝜆 ∫
[𝐺(𝑥;𝜉)−𝛼−1]

0

  exp(−𝜆𝑥)𝑑𝑡 

= 1 − exp (𝜆 {1 − [𝐺(𝑥; 𝜉)]
−𝛼

}) , 𝑥 ∈ ℝ,                 (3) 

where 𝜉 = (𝜉𝑘) = (𝜉1, 𝜉2, . . . ) is a parameter vector and 𝐺(𝑥; 𝜉) = 𝐺(𝑥) is the baseline 

cdf and 𝜆 and 𝛼 are positive parameters. For 𝛼 = 1, we obtain the odd exponential-G 

proposed by Bourguignon et.al. (2014). The corresponding pdf is  

𝑓TIIGE(𝑥) = 𝜆𝛼𝑔(𝑥)𝐺(𝑥)−(𝛼+1)exp (𝜆 {1 − [𝐺(𝑥)]
−𝛼

}) , 𝑥 ∈ ℝ.                 (4) 

The reliability function (RF) [𝑅(𝑋)], hazard rate function (HRF) [ℎ(𝑋)], reversed-hazard 

rate function (RHR) [𝑟(𝑥)] and cumulative hazard rate function (CHR) [𝐻(𝑋)] of the 

TIIGE family are given by 

 𝑅(𝑥) = exp (𝜆 {1 − [𝐺(𝑥)]
−𝛼

}), 

 ℎ(𝑥) = 𝜆𝛼𝑔(𝑥)𝐺(𝑥)−(𝛼+1), 
 

 𝑟(𝑥) =
𝜆𝛼𝑔(𝑥)𝐺(𝑥)−(𝛼+1)exp(𝜆{1−[𝐺(𝑥)]

−𝛼
})

1−exp(𝜆{1−[𝐺(𝑥)]
−𝛼

})
, 

and 

 𝐻(𝑥) = −𝜆 {1 − [𝐺(𝑥)]
−𝛼

}, 

respectively. If 𝑈~𝑈(0,1) and 𝑄𝐺(. ) denote the quantile function of 𝐺, then 

 𝑋𝑈 = 𝐺−1 {1 − [1 −
ln(1−𝑈)

𝜆
]

−1

𝛼
}, 

has cdf (3). An interpretation of the TIIGE family (3) can be given as follows. Let 𝑇 be a 

random variable describing a stochastic system by the cdf 1 − 𝐺̅(𝑥)𝛼 (for 𝛼 > 0). If the 
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random variable 𝑋 represents the odds ratio, the risk that the system following the 

lifetime 𝑇 will not be working at time 𝑥 is given by (1 − 𝐺̅(𝑥)𝛼)/𝐺̅(𝑥)𝛼. If we are 

interested in modeling the randomness of the odds ratio by the Exponential pdf 𝑟(𝑡) =
𝜆e−𝜆t (for 𝑡 > 0), the cdf of 𝑋 is given by  

 𝑃𝑟(𝑋 ≤ 𝑥) = 𝑅 (
(1−𝐺̅(𝑥)𝛼)

𝐺̅(𝑥)𝛼 ), 

which is exactly the cdf (3) of the new family. 

The basic motivations for using the TIIGE-G family in practice are: (i) to make the 

kurtosis more flexible compared to the baseline model; (ii) to produce a skewness for 

symmetrical distributions; (iii) to construct heavy-tailed distributions that are not longer-

tailed for modeling real data; (iv) to generate distributions with symmetric, left-skewed, 

right-skewed and reversed-J shaped; (v) to define special models with all types of the hrf; 

and (vi) to provide consistently better fits than other generated models under the same 

baseline distribution. 

Now, Several structural properties of the extended distributions may be easily explored 

using mixture forms of exponentiated-G (“Exp-G”) models. In the following, we obtain 

expansions for 𝐹(𝑥) and 𝑓(𝑥). So here we provide a useful representation for (3). The 

cdf of the TIIGE family in (3) can be expressed as 

𝐹(𝑥) = 1 − 𝑒𝜆−𝜆[𝐺(𝑥)]
−𝛼

= 1 − exp(𝜆) ∑∞
𝑗=0

(−𝜆)𝑗

𝑗!
𝐺(𝑥)𝛼𝑗.                       (5) 

Expanding 𝐺(𝑥)−𝛼𝑗 and after some algebra we get 

 𝐹(𝑥) = 1 − ∑∞
𝑗=0 ∑∞

𝑘=0
(−1)𝑗+𝑘𝜆𝑗

𝑗!exp(−𝜆)
(

−𝛼 𝑗
𝑘

) 𝐺(𝑥)𝑘. 

The above equation can be expressed as 

𝐹(𝑥) = 1 − ∑∞
𝑘=0 𝑎𝑘𝚷𝑘(𝑥),                         (6) 

where 𝑎𝑘 = ∑∞
𝑗=0

(−1)𝑗+𝑘𝜆𝑗

𝑗!exp(−𝜆)
(

−𝛼 𝑗
𝑘

) and 𝚷𝛿(𝑥) = 𝐺(𝑥)𝛿 is the cdf of the Exp-G 

distribution with power parameter 𝛿. The corresponding TIIGE density function is 

obtained by differentiating (6) 

𝑓(𝑥) = ∑∞
𝑘=0 𝜐𝑘+1𝜋𝑘+1(𝑥),                                   (7) 

where 𝜐𝑘+1 = −𝑎𝑘 and 𝜋𝛿(𝑥) = 𝛿𝑔(𝑥)𝐺(𝑥)𝛿−1 is the pdf of the Exp-G distribution with 

power parameter 𝛿. The properties of Exp-G distributions have been studied by many 

authors in recent years, see Mudholkar and Srivastava (1993) and Mudholkar et al. 

(1995) for exponentiated Weibull, Gupta et al. (1998) for exponentiated Pareto, Gupta 

and Kundu (1999) for exponentiated exponential, Nadarajah (2005) for the 

exponentiated-type distributions, Nadarajah and Kotz (2006) for exponentiated Gumbel, 

Shirke and Kakade (2006) for exponentiated log-normal and Nadarajah and Gupta (2007) 

for exponentiated gamma distributions, among others. 

The paper is unfolded as follows. In Section 2, we obtain some mathematical properties 

of the proposed model. In Section 3, we provide some useful characterizations of the new 

model. In Section 4, the model parameters are estimated by using maximum likelihood 

method and a simulation study is performed. Some special TIIGE models are given in 

Section 5. Two applications are given in Section 6 to illustrate the flexibility of the 

proposed model. Finally, Section 7offers some concluding remarks. 

 

2.Properties 
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2.1  Asymptotics 

Let 𝑎 = inf{𝑥|𝐹(𝑥) > 0}. the asymptotics of cdf, pdf and hrf as 𝑥 → 𝑎 are given by    

𝐹(𝑥)~𝛼𝜆𝐺(𝑥)as𝑥 → 𝑎, 
𝑓(𝑥)~𝛼𝜆𝑔(𝑥)as𝑥 → 𝑎, 
ℎ(𝑥)~𝛼𝜆𝑔(𝑥)as𝑥 → 𝑎. 

The asymptotics of cdf, pdf and hrf as 𝑥 → ∞  are given by   

1 − 𝐹(𝑥)~exp[−𝜆𝐺(𝑥)−𝛼]as𝑥 → ∞, 

𝑓(𝑥)~𝛼𝜆𝑔(𝑥)𝐺(𝑥)−𝛼−1exp[−𝜆𝐺(𝑥)−𝛼]as𝑥 → ∞, 

ℎ(𝑥)~𝛼𝜆𝑔(𝑥)𝐺(𝑥)−𝛼−1as𝑥 → ∞. 
We can evaluate the effect of parameters on tails of distribution using these equations. 

 

 

2.2 Moments and generating function 

The 𝑟th moment of 𝑋, say 𝜇𝑟
′ , follows from (7) as 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑∞

𝑘=0 𝜐𝑘+1  𝐸(𝑌𝑘+1
𝑟 ).                             (8) 

Henceforth, 𝑌𝑘+1 denotes the Exp-G distribution with power parameter (𝑘 + 1). For 𝛾 >

0, we have 𝐸(𝑌𝛾
𝑟) = 𝛼  ∫

∞

−∞
𝑥𝑟   𝑔(𝑥; 𝜉)  𝐺(𝑥; 𝜉)𝛾−1  𝑑𝑥, which can be computed 

numerically in terms of the baseline quantile function (QF) 𝑄𝐺(𝑢; 𝜉) = 𝐺−1(𝑢; 𝜉) as 

𝐸(𝑌𝛾
𝑛) = 𝛾  ∫

1

0
  𝑄𝐺(𝑢; 𝜉)𝑛  𝑢𝛾−1𝑑𝑢. The 𝑛th central moment of 𝑋, say 𝑀𝑛, is given by  

𝑀𝑛 = 𝐸(𝑋 − 𝜇1
′ )𝑛 = ∑

𝑛

𝑟=0

(
𝑛
𝑟

) (−𝜇1
′ )𝑛−𝑟 𝐸(𝑋𝑟)

= ∑

𝑛

𝑟=0

∑

∞

𝑘=0

(−1)𝑛−𝑟 𝜐𝑘+1  (
𝑛
𝑟

) (−𝜇1
′ )𝑛−𝑟 𝐸(𝑋𝑟). 

The cumulants (𝜅𝑛) of 𝑋 follow recursively from 𝜅𝑛 = 𝜇𝑛
′ − ∑𝑛−1

𝑟=0 (
𝑛 − 1
𝑟 − 1

) 𝜅𝑟 𝜇𝑛−𝑟
′ , 

where 𝜅1 = 𝜇1
′ , 𝜅2 = 𝜇2

′ − 𝜇1
′2, 𝜅3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′3, etc. The skewness and kurtosis 

measures can be calculated from the ordinary moments using well-known relationships. 

Here, we provide two formulas for the moment generating function (mgf) 𝑀𝑋(𝑡) =
𝐸(e𝑡 𝑋) of 𝑋. Clearly, the first one can be derived from equation (7) as 𝑀𝑋(𝑡) =
∑∞

𝑘=0 𝜐𝑘+1 𝑀𝑘+1(𝑡), where 𝑀𝑘+1(𝑡) is the mgf of 𝑌𝑘+1. Hence, 𝑀𝑋(𝑡) can be determined 

from the Exp-G generating function. A second formula for 𝑀𝑋(𝑡) follows from (7) as 

𝑀𝑋(𝑡) = ∑∞
𝑘=0 𝜐𝑘+1 𝜍(𝑡, 𝑘), where 

𝜍(𝑡, 𝑘) = ∫
1

0

exp[𝑡 𝑄𝐺(𝑢)] 𝑢𝑘𝑑𝑢 

and 𝑄𝐺(𝑢) is the qf corresponding to 𝐺(𝑥; 𝜉), i.e., 𝑄𝐺(𝑢) = 𝐺−1(𝑢; 𝜉). For the TIIGE-W 

model we obtain the following results 

 𝜇𝑟
′ = ∑∞

𝑘,ℎ=0 𝜐𝑘+1
(𝑘+1)(−1)𝑖

𝑎𝑟(ℎ+1)(𝑟+𝑏)/𝑏
(

𝑘
ℎ

)  Γ (1 +
𝑟

𝑏
) , ∀𝑟 > −𝑏, 

and 

 𝑀𝑋(𝑡) = ∑∞
𝑘,𝑟,ℎ=0 𝜐𝑘+1

(𝑘+1)(−1)𝑖𝑡𝑟

𝑟!𝑎𝑟(ℎ+1)(𝑟+𝑏)/𝑏
(

𝑘
ℎ

)  Γ (1 +
𝑟

𝑏
) , ∀𝑟 > −𝑏. 
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Following similar algebraic developments of Nadarajah et al. (2013), the second formula 

for 𝑀𝑋(𝑡) can be obtained as follows: Using the series expansion  

 (1 − 𝑧)𝑎 = ∑∞
ℎ=0 (

𝑎
ℎ

) (−𝑧)ℎ, 

for |𝑧| < 1, one can expand (𝑘 + 1)𝑏𝑎𝛽𝑥𝑏−1exp [−(𝑎𝑥) 𝑏] {1 − exp [−(𝑎𝑥) 𝑏]}
𝑘

 as  

𝑓(𝑥) = (𝑘 + 1) ∑∞
ℎ=0

(−1)ℎ

ℎ+1
(

𝑘
ℎ

) 𝑓
𝑎(ℎ+1)

1
𝑏

(𝑥),                   (9) 

where 𝑓𝑎(ℎ+1)1/𝑏(⋅) denotes the pdf of a two-parameters Weibull model with 𝑎 replaced 

by (ℎ + 1)1/𝑏𝑎. So, whenever possible, (9) can be used to derive mgf of the TIIGE-W 

model from those of a two-parameters Weibull distribution. Consider 𝑝Ψ𝑞(⋅) , the 

complex parameter Wright generalized hypergeometric function with 𝑝 numerator and 𝑞 

denominator parameters (Kilbas et al., 2006, Equation (1.9)) defined by the series  

  𝑝Ψ𝑞 [
(𝛼1, 𝐴1), … , (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1), … , (𝛽𝑞 , 𝐵𝑞)
; 𝑧] = ∑∞

𝑛=0

∏
𝑝
𝑗=1 Γ(𝛼𝑗+𝐴𝑗𝑛)

∏
𝑞
𝑗=1

Γ(𝛽𝑗+𝐵𝑗𝑛)
 
𝑧𝑛

𝑛!
for𝑧 ∈ 𝛽,        (10) 

where 𝛼𝑗, 𝛽𝑘 ∈Bbb , 𝐴𝑗, 𝐵𝑘 ≠ 0, 𝑗 = 1, 𝑝, 𝑘 = 1, 𝑞 and the series converges for 1 +

∑𝑞
𝑗=1 𝐵𝑗 − ∑𝑝

𝑗=1 𝐴𝑗 > 0, compare with Mathai and Saxena (1978) and Srivastava et al. 

(1982). This function was originally introduced by Wright (1935). Let 𝑋 be a random 

variable having the pdf (4), we can write the mgf of the TIIGE-W model as  

𝑀𝑋(𝑡) = ∑∞
𝑘,ℎ=0 𝜐𝑘+1

(−1)ℎ(𝑘+1)

ℎ+1
(

𝑘
ℎ

)
1

Ψ0 [(
1,1

𝑏
)

−  
; 𝑡 {(ℎ + 1)

1

𝑏𝑎}−1].      (11) 

Hypergeometric functions are included as in-built functions in most popular algebraic 

mathematical software packages, so the special function in (10) and hence (11) can be 

easily evaluated by the software packages Maple, Matlab and Mathematica using known 

procedures. 

2.3  Incomplete moments 

The main applications of the first incomplete moment refer to the mean deviations and 

the Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. The 𝑠th incomplete moment, say 𝜑𝑠(𝑡), of 𝑋 can 

be expressed using (6) as  

𝜑𝑠(𝑡) = ∫
𝑡

−∞
𝑥𝑠𝑓(𝑥)𝑑𝑥 = ∑∞

𝑘=0 𝜐𝑘+1 ∫
𝑡

−∞
𝑥𝑠  𝜋𝑘+1(𝑥)𝑑𝑥.          (12) 

The mean deviations about the mean [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)] and about the median [𝛿2 =

𝐸(|𝑋 − 𝑀|)] of 𝑋 are given by 𝛿1 = 2𝜇1
 ′𝐹(𝜇1

′ ) − 2𝜑1(𝜇1
′ ) and 𝛿2 = 𝜇1

′ − 2𝜑1(𝑀), 

respectively, where 𝜇1
′ = 𝐸(𝑋), 𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄(0.5) is the median, 𝐹(𝜇1

′ ) is 

easily calculated from (3) and 𝜑1(𝑡) is the first incomplete moment given by (12) with 

𝑠 = 1. Now, we provide two ways to determine 𝛿1 and 𝛿2. First, a general equation for 

𝜑1(𝑡) can be derived from 𝜑𝑠(𝑡) as 𝜑1(𝑡) = ∑∞
𝑘=0 𝜐𝑘+1 𝛿𝑘+1(𝑥), where 𝛿𝑘+1(𝑥) =

∫
𝑡

−∞
 𝑥 𝜋𝑘+1(𝑥)𝑑𝑥 is the first incomplete moment of the exp-G distribution. A second 

general formula for 𝜑1(𝑡) is given by 𝜑1(𝑡) = ∑∞
𝑘=0 𝜐𝑘+1 𝜂𝑘(𝑡), where 𝜂𝑘(𝑡) =

(𝑘 + 1) ∫
𝐺(𝑡)

0
 𝑄𝐺(𝑢) 𝑢𝑘𝑑𝑢 can be computed numerically. These equations for 𝜑1(𝑡) can 

be applied to construct Bonferroni and Lorenz curves defined for a given probability 𝜋 by 

𝐵(𝜋) = 𝜑1(𝑞)/(𝜋𝜇1
′ ) and 𝐿(𝜋) = 𝜑1(𝑞)/𝜇1

′ , respectively, where 𝜇1
′ = 𝐸(𝑋) and 𝑞 =

𝑄(𝜋) is the qf of 𝑋 at 𝜋. For the TIIGE-W model we get  



G.G. Hamedani, Mahdi Rasekhi, Sayed Najibi, Haitham Yousof, Morad Alizadeh 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp503-523 508 

 𝜑𝑠(𝑡) = ∑∞
𝑘,ℎ=0 𝜐𝑘+1

(𝑘+1)(−1)ℎ

𝑎𝑠(ℎ+1)(𝑠+𝑏)/𝑏
(

𝑘
ℎ

)  𝛾 (1 +
𝑠

𝑏
, (

𝑎

𝑡
)

𝑏

) , ∀𝑠 > −𝑏, 

where 𝛾(. , . ) is the lower incomplete gamma function. 

2.4 moment residual life and reversed residual life 

The 𝑛th moment of the residual life, say 𝑧𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛|𝑋 > 𝑡], 𝑛 = 1,2, …, 

uniquely determines 𝐹(𝑥). The 𝑛th moment of the residual life of 𝑋 is given by 𝑧𝑛(𝑡) =
1

1−𝐹(𝑡)
 ∫

∞

𝑡
(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥). 

 Therefore 

𝑧𝑛(𝑡) =
1

1 − 𝐹(𝑡)
∑

∞

𝑘=0
𝜐𝑘+1

∗ ∫
∞

𝑡

𝑥𝑟  𝜋𝑘+1(𝑥)𝑑𝑥, 

where 

𝜐𝑘+1
∗ = 𝜐𝑘+1 ∑

𝑟=0

𝑛

(
𝑛
𝑟

) (−𝑡)𝑛−𝑟. 

 Another interesting function is the mean residual life (MRL) function or the life 

expectation at age 𝑡 defined by 𝑧1(𝑡) = 𝐸[(𝑋 − 𝑡)|𝑋 > 𝑡], which represents the expected 

additional life length for a unit which is alive at age 𝑡. The MRL of 𝑋 can be obtained by 

setting 𝑛 = 1 in the last equation. 

 

 The 𝑛th moment of the reversed residual life, say 𝑍𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)𝑛|𝑋 ≤ 𝑡], for 𝑡 > 0 

and 𝑛 = 1,2, …, uniquely determines 𝐹(𝑥). We obtain 𝑍𝑛(𝑡) =
1

𝐹(𝑡)
∫

𝑡

0
(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥). 

Then, the 𝑛th moment of the reversed residual life of 𝑋 becomes 

𝑍𝑛(𝑡) =
1

𝐹(𝑡)
∑

∞

𝑘=0
𝜐𝑘+1

∗∗ ∫
𝑡

0

𝑥𝑟  𝜋𝑘+1(𝑥)𝑑𝑥, 

 where 

𝜐𝑘+1
∗∗ = 𝜐𝑘+1 ∑

𝑟=0

𝑛

 (−1)𝑟  (
𝑛
𝑟

) 𝑡𝑛−𝑟. 

The mean inactivity time (MIT), also called the mean reversed residual life function, is 

given by 𝑍1(𝑡) = 𝐸[(𝑡 − 𝑋)|𝑋 ≤ 𝑡], and it represents the waiting time elapsed since the 

failure of an item on condition that this failure had occurred in (0, 𝑡). The MIT of the 

TIIGE-G family can be obtained easily by setting 𝑛 = 1 in the above equation. For the 

TIIGE-W model we get 

 𝑧𝑛(𝑡) =  
1

1−𝐹(𝑡)
∑∞

𝑘,ℎ=0   
(𝑘+1)(−1)ℎ𝜐𝑘+1

∗

𝑎𝑛(ℎ+1)(𝑛+𝑏)/𝑏 (
𝑘
ℎ

)  𝛾 (1 +
𝑛

𝑏
, (

𝑎

𝑡
)

𝑏

) , ∀𝑛 > −𝑏, 

and 

 𝑍𝑛(𝑡) =
1

𝐹(𝑡)
∑∞

𝑘,ℎ=0
(𝑘+1)(−1)ℎ𝜐𝑘+1

∗∗

𝑎𝑛(ℎ+1)
(𝑛+𝑏)

𝑏

(
𝑘
ℎ

)  𝛾 (1 +
𝑛

𝑏
, (

𝑎

𝑡
)

𝑏

) , ∀𝑛 > −𝑏. 

2.5 Order statistics 

Suppose 𝑋1, … , 𝑋𝑛 is a random sample from any TIIGE-G distribution. Let 𝑋𝑖:𝑛 denote 

the 𝑖th order statistic. The pdf of 𝑋𝑖:𝑛 can be expressed as  

 𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖,𝑛−𝑖+1)
 ∑𝑛−𝑖

𝑗=0 (−1)𝑗  (
𝑛 − 𝑖
𝑗

)   𝐹(𝑥)𝑗+𝑖−1. 

Following similar algebraic developments of Nadarajah et al. (2015), we can write the 

density function of 𝑋𝑖:𝑛 as  
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𝑓𝑖:𝑛(𝑥) = ∑∞
𝑟,𝑘=0  𝑏𝑟,𝑘 𝜋𝑟+𝑘+1(𝑥),                                 (13) 

where  

𝑏𝑟,𝑘 =
𝑛! (𝑟 + 1) (𝑖 − 1)! 𝜐𝑟+1

(𝑟 + 𝑘 + 1)
∑

𝑛−𝑖

𝑗=0

 
(−1)𝑗 𝑓𝑗+𝑖−1,𝑘

(𝑛 − 𝑖 − 𝑗)!  𝑗!
, 

𝜐𝑟+1 is given in Section 1 and the quantities 𝑓𝑗+𝑖−1,𝑘 can be determined with 𝑓𝑗+𝑖−1,0 =

𝜐0
𝑗+𝑖−1

 and recursively for 𝑘 ≥ 1  

𝑓𝑗+𝑖−1,𝑘 = (𝑘 𝜐0)−1 ∑

𝑘

𝑚=1

[𝑚 (𝑗 + 𝑖) − 𝑘] 𝜐𝑚 𝑓𝑗+𝑖−1,𝑘−𝑚. 

Equation (13) is the main result of this section. It reveals that the pdf of the TIIGE-G 

order statistics is a linear combination of exp-G density functions. So, several 

mathematical quantities of the TIIGE-G order statistics such as ordinary, incomplete and 

factorial moments, mean deviations and several others can be determined from those 

quantities of the Exp-G distribution. For example, for the TIIGE-W model we get 

𝐸(𝑋𝑖:𝑛
𝑞 ) = ∑

∞

𝑘,𝑟,ℎ=0

  
(𝑟 + 𝑘 + 1)(−1)𝑖𝑏𝑟,𝑘

𝑎𝑞(ℎ + 1)(𝑞+𝑏)/𝑏
(

𝑟 + 𝑘
ℎ

)  Γ (1 +
𝑞

𝑏
) , ∀𝑞 > −𝑏. 

2.6 Stress-strength model 

The stress-strength model is the most widely approach used for reliability estimation. 

This model is used in many  applications of physics and engineering such as strength 

failure and system collapse. In stress-strength modeling, 𝐑 = Pr(𝑋2 < 𝑋1) is a measure 

of reliability of the system when it is subjected to random stress 𝑋2 and has strength 𝑋1. 

The system fails if and only if the applied stress is greater than its strength and the 

component will function satisfactorily whenever 𝑋1 > 𝑋2. 𝐑 can be considered as a 

measure of system performance and naturally raised in electrical and electronic  systems. 

Other interpretations can be that, the reliability, say 𝐑, of the system is the  probability 

that the system is strong enough to overcome the stress imposed on it. Let 𝑋1 and 𝑋2 be 

two independent random variables with TIIGE(𝜆1, 𝛼1, 𝜉) and TIIGE(𝜆2, 𝛼2, 𝜉) 

distributions. Then, the reliability is defined by 

𝐑 = ∫
∞

0

𝑓1(𝑥; 𝜆1, 𝜃1, 𝛼, 𝛽)𝐹2(𝑥; 𝜆2, 𝜃2, 𝛼, 𝛽)𝑑𝑥 = ∑

∞

𝑘=0

(Υ𝑘+1 + ∑

∞

𝑚=0

𝜙𝑘+𝑚+2), 

where  

 Υ𝑘+1 = ∑∞
𝑗=0

(−1)𝑗+𝑘𝜆1
𝑗

𝑗!𝑒−𝜆1
(

−𝛼1𝑗
𝑘

), 

and 

 𝜙𝑘+𝑚+2 = ∑∞
𝑗,𝑤=0

(−1)𝑗+𝑘+𝑤+𝑚+1𝜆1
𝑗

𝜆2
𝑤(𝑘+1)

𝑗!𝑤!𝑒−𝜆1−𝜆2(𝑘+𝑚+2)
(

−𝛼1𝑗
𝑘

) (
−𝛼2 𝑤
𝑚

). 

 

3.  Characterizations 

The problem of characterizing a distribution is an important problem, in its own right, 

which can help the investigator to see if their model is the correct one.  This section deals 

with various characterizations of  TIIGE distribution. These characterizations are 
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presented in three directions: (𝑖) based on the ratio of two truncated moments; (𝑖𝑖) in 

terms of the hazard function and (𝑖𝑖𝑖) based on the conditional expectation of certain 

functions of the random variable. It should be noted that characterization (𝑖) can be 

employed also when the 𝑐𝑑𝑓  does not have a closed form. 

We present our characterizations  (𝑖) − (𝑖𝑖𝑖)  in three subsections. 

 

3.1 Characterizations based on two truncated moments 

This subsection deals with the characterizations of TIIGE distribution based on the ratio 

of two truncated moments. Our first characterization employs a theorem of Glänzel 

(1987), see Theorem 1 of Appendix A .The result, however, holds also when the interval 

𝐻  is not closed since the condition of Theorem 1 is on the interior of 𝐻. 

Proposition 3.1.  Let 𝑋: Ω → ℝ be a continuous random variable and let  𝑞1(𝑥) ≡ 1 and 

𝑞2(𝑥) = exp {𝜆 (1 − (𝐺(𝑥; 𝜉))
−𝛼

)} for 𝑥 ∈ ℝ. The random variable 𝑋 belongs to the 

family (4) if and only if the function 𝜂 defined in Theorem1 has the form 

 𝜂(𝑥) =
1

2
exp {𝜆 (1 − (𝐺(𝑥; 𝜉))

−𝛼

)} ,    𝑥 ∈ ℝ. 

Proof.  Let  𝑋  be a random variable with pdf (4), then 

 

 (1 − 𝐹(𝑥))𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] = exp {𝜆 (1 − (𝐺(𝑥))
−𝛼

)} ,    𝑥 ∈ ℝ, 

and 

 

 (1 − 𝐹(𝑥))𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥] =
1

2
exp {2𝜆 (1 − (𝐺(𝑥))

−𝛼

)} ,    𝑥 ∈ ℝ, 

and finally 

 𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) = −
1

2
exp {𝜆 (1 − (𝐺(𝑥))

−𝛼

)} < 0𝑓𝑜𝑟  𝑥 ∈ ℝ. 

Conversely, if 𝜂 is given as above, then 

 𝑠′(𝑥) =
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥)−𝑞2(𝑥)
= 𝛼𝜆𝑔(𝑥) (𝐺(𝑥))

−(𝛼+1)

, 𝑥 ∈ ℝ, 

and hence 

 𝑠(𝑥) = 𝜆 (𝐺(𝑥))
−𝛼

,    𝑥 ∈ ℝ. 

Now, according to Theorem 1,   𝑋  has density (4).  

Corollary 3.1.  Let 𝑋: Ω → ℝ  be a continuous random variable and let 𝑞1(𝑥) be as in 

Proposition 3.1. Then, 𝑋  has 𝑝𝑑𝑓 (4) if and only if there exist functions 𝑞2 and 𝜂 

defined in Theorem 1 satisfying the differential equation 

 
𝜂′(𝑥)

𝜂(𝑥)−𝑔(𝑥)
= 𝛼𝜆𝑔(𝑥) (𝐺(𝑥))

−(𝛼+1)

,    𝑥 ∈ ℝ. 

The general solution of the differential equation in Corollary 3.1 is 

 𝜂(𝑥) = exp {−𝜆 (1 − (𝐺(𝑥))
−𝛼

)} [
− ∫ 𝛼𝜆𝑔(𝑥) (𝐺(𝑥))

−(𝛼+1)

×

exp {𝜆 (1 − (𝐺(𝑥))
−𝛼

)} 𝑞2(𝑥)𝑑𝑥 + 𝐷
], 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 3.1 with 𝐷 = 0. 
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3.2 Characterization in terms of the hazard function 

It is known that the hazard function, ℎ𝐹, of a twice differentiable distribution function, 𝐹, 

satisfies the first order differential equation 

 
𝑓′(𝑥)

𝑓(𝑥)
=

ℎ𝐹
′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 

 For many univariate continuous distributions, this is the only characterization available 

in terms of the hazard function. The following characterization establishes a non-trivial 

characterization of TIIGE in terms of the hazard function which is not of the above trivial 

form.  

Proposition 3. 2.  Let 𝑋: Ω → ℝ be a continuous random variable. Then, 𝑋  has   𝑝𝑑𝑓  
(4) if and only if its hazard function ℎ𝐹(𝑥) satisfies the differential equation 

 ℎ𝐹
′ (𝑥) −

𝑔′(𝑥)

𝑔(𝑥)
ℎ𝐹(𝑥) = 𝛼(𝛼 + 1)𝜆(𝑔(𝑥))2 (𝐺(𝑥))

−(𝛼+2)

, 

with the boundary condition  ℎ𝐹(0) = 𝛼𝜆𝑘(0). 
Proof.  If  𝑋  has 𝑝𝑑𝑓  (4), then clearly the above differential equation holds.  Now, if the 

differential equation holds, then 
𝑑

𝑑𝑥
{(𝑔(𝑥))

−1
ℎ𝐹(𝑥)} = 𝛼(𝛼 + 1)𝜆𝑔(𝑥) (𝐺(𝑥))

−(𝛼+2)

 

= 𝛼𝜆
𝑑

𝑑𝑥
{(𝐺(𝑥))

−(𝛼+1)

}, 

or 

 ℎ𝐹(𝑥) = 𝛼𝜆𝑔(𝑥) (𝐺(𝑥))
−(𝛼+1)

    𝑥 > 0, 

which is the hazard function of (4). 

 

 

 

3.3 Characterization based on the conditional expectation of certain 

functions of the random variable 

In this subsection we employ a single function 𝜓 of 𝑋 and characterize the distribution of 

𝑋 in terms of the truncated moment of 𝜓(𝑋). The following proposition has already 

appeared in Hamedani’s previous work (2013), so we will just state it as a proposition 

here, which can be used to characterize TIIGE distribution. 

Proposition 3.3.   Let  𝑋: Ω → (𝑑, 𝑒)  be a continuous random variable with  𝑐𝑑𝑓  𝐹 .  Let  

𝜓(𝑥)  be a differentiable function on  (𝑑, 𝑒)  with  lim𝑥→𝑑+𝜓(𝑥) = 1.  Then for  𝛿 ≠ 1 , 

 𝐸[𝜓(𝑋)|𝑋 ≥ 𝑥] = 𝛿𝜓(𝑥),    𝑥 ∈ (𝑑, 𝑒), 
if and only if 

 𝜓(𝑥) = (1 − 𝐹(𝑥))
1

𝛿
−1

,    𝑥 ∈ (𝑑, 𝑒), 

Remarks 3.1. For (𝑎, 𝑏) = ℝ , 𝜓(𝑥) = exp {1 − (𝐺(𝑥))
−𝛼

} and 𝛿 =
𝜆

𝜆+1
 , Proposition 

3.3 provides a characterization of TIIGE. 
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4. Estimation 

4.1 Maximum likelihood method 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The MLEs enjoy 

desirable properties and can be used for constructing confidence intervals and also for 

test statistics. The normal approximation for these estimators in large samples can be 

easily handled either analytically or numerically. Here, we consider the estimation of the 

unknown parameters of the new family from complete samples only by maximum 

likelihood. Let 𝑥1, … , 𝑥𝑛 be a random sample from the TIIGE-G model with a (𝑞 +
2) × 1 parameter vector 𝚽 =(𝜆, 𝛼, 𝜉) ú, where 𝜉 is a 𝑞 × 1 baseline parameter vector. The 

log-likelihood function for 𝚽 is given by  

ℓ𝑛(𝚽) = 𝑛log(𝜆) + 𝑛log(𝛼) + ∑

𝑛

𝑖=1

log[𝑔(𝑥𝑖, 𝜉)] + ∑

𝑛

𝑖=1

log[𝐺̅(𝑥𝑖, 𝜉)]

+ 𝜆 ∑

𝑛

𝑖=1

{1 − [𝐺(𝑥; 𝜉)]
−𝛼

}, 

The log-likelihood function can be maximized by solving the following nonlinear normal 

equations    

𝑈(𝜆) =
𝑛

𝜆
+ ∑

𝑛

𝑖=1

{1 − [𝐺(𝑥; 𝜉)]
−𝛼

} , 𝑈(𝛼) =
𝑛

𝛼
] + 𝜆 ∑

𝑛

𝑖=1

[𝐺(𝑥; 𝜉)]
−𝛼

log[𝐺(𝑥; 𝜉)], 

and (for 𝑟 = 1, . . . , 𝑞) 

𝑈(𝜉𝑟) = ∑

𝑛

𝑖=1

𝑔(𝜉𝑟)(𝑥𝑖, 𝜉)

𝑔(𝑥𝑖 , 𝜉)
− ∑

𝑛

𝑖=1

𝐺(𝜉𝑟)(𝑥𝑖, 𝜉)

𝐺̅(𝑥𝑖, 𝜉)
− 𝜆𝛼 ∑

𝑛

𝑖=1

𝐺(𝜉𝑟)(𝑥𝑖, 𝜉)[𝐺(𝑥; 𝜉)]
−𝛼−1

 

Where 

𝑔(𝜉𝑟)(𝑥𝑖 , 𝜉) =
∂[𝑔(𝑥𝑖, 𝜉)]

∂𝜉𝑟
 and 𝐺(𝜉𝑟)(𝑥𝑖, 𝜉) =

∂[𝐺(𝑥𝑖, 𝜉)]

∂𝜉𝑟
. 

Setting the nonlinear system of equations 𝑈(𝜆) = 𝑈(𝛼) = 𝑈(𝜉𝑟) = 0 (for 𝑟 = 1 = ⋯ , 𝑞) 

and solving them simultaneously yields the MLEs 𝚽̂ = (𝜆̂, 𝛼̂, 𝜉ú)ú. To solve these 

equations, it is more convenient to use nonlinear optimization methods such as the quasi-

Newton algorithm to numerically maximize ℓ(𝚽). For interval estimation of the 

parameters, we can evaluate numerically the elements of the (𝑞 + 2) × (𝑞 + 2) observed 

information matrix 𝐽(𝚽) = {−
∂2

∂Φ𝑟 Φ𝑠
[ℓ𝑛(𝚽)]}. Under standard regularity conditions 

when 𝑛 → ∞, the distribution of 𝚽̂ can be approximated by a multivariate normal 

𝑁𝑝(0, 𝐽(𝚽̂)−1) distribution to construct approximate confidence intervals for the 

parameters. Here, 𝐽(𝚽̂) is the total observed information matrix evaluated at 𝚽̂. The 

method of the re-sampling bootstrap can be used for correcting the biases of the MLEs of 

the model parameters. We can compute the maximum values of the unrestricted and 

restricted log-likelihoods to obtain likelihood ratio (LR) statistics for testing some sub-

models of the TIIGE-G model. Hypothesis tests of the type 𝐻0: 𝜔 = 𝜔0 versus 𝐻1: 𝜔 ≠
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𝜔0, where 𝜔 is a vector formed with some components of 𝚽 and 𝜔0 is a specified vector, 

can be performed using LR statistics. For example, the test of  

 𝐻0: 𝚽 = 1  versus 𝐻1: 𝐻0  𝑖𝑠 𝑛𝑜𝑡  𝑡𝑟𝑢𝑒 

is equivalent to comparing the TIIGE and G distributions and the LR statistic is given by 

𝑤 = 2{ℓ(𝜆̂, 𝛼̂, 𝜉) − ℓ(1,1, 𝜉)},where 𝜆̂, 𝛼̂ and 𝜉 are the MLEs under 𝐻 and 𝜉 is the 

estimate under 𝐻0. 

 

4.2 Simulation study 

In this section, we survey the performance of the MLEs of the Type II General 

Exponential Lomax (TIIGELO) distribution with respect to sample size 𝑛. This 

performance is done based on the following simulation study:  

1.Generate 1000 samples of size 𝑛 from TIIGELO distribution. The inversion method 

was used to generate samples.  

2.Compute the MLEs for 1000 thousand samples, say (𝛼̂, 𝜆̂, 𝑎̂, 𝑏̂) for 𝑖 = 1,2, . . . ,1000 

based on non-linear equations. 

3.Compute the standard errors of the MLEs. 

4.Compute the biases, mean squared errors and coverage lengths. 

Then these steps are repeated for 𝑛 = 20,30,50,100,150,200,250,300 TIIGE-

LO(15,2,20,1) and TIIGE-LO(2,2,4,6), and computing 𝐵𝑖𝑎𝑠(𝑛), 𝑀𝑆𝐸(𝑛), 𝐶𝐼(𝑛) for 𝜀 =
(𝛼, 𝜆, 𝑎, 𝑏). Figure1 shows the variation of four parameter biases with respect to n. The 

biases for each parameter decrease to zero as n goes to infinity. Figure 2 shows how the 

four mean squared errors vary with respect to n. The mean squared errors for each 

parameter decrease to zero as 𝑛 → ∞. Table 1 shows the simulation study results for 

TIIGE-LO(15,2,20,1) and TIIGE-LO(2,2,4,6). In summary, the biases and MSEs for 

each parameter decreased to zero and appeared reasonably small at 𝑛 = 300. Clearly, the 

rate of convergence of MSE for 𝛼 and 𝑎 is less than 𝜆 and 𝑏. 
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Figure 1: The Bias of different parameters of TIIGE-LO(15,2,20,1 ) 

and TIIGE-LO(2,2,4,6 ) versus 𝑛 =20, 30, 50, 100, 150, 200, 250 and 300. 
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Figure 2: The MSE of different parameters of TIIGE-LO(15,2,20,1 ) 

and TIIGE-LO(2,2,4,6 ) versus n = 20, 30, 50, 100, 150, 200, 250, and 300. 

Table 1: Any information that is needed based on the output interpretation 

 
 

5. Special T𝐈𝐈GE models 

In this section, we provide two special models of the TIIGE family. These special models 

generalize some wellknown distributions reported in the literature. They correspond to 

the baseline Lomax (LO) and Lindley (L) distributions and illustrate the flexibility of the 

new family. 
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5.1 The T𝐈𝐈GE-Lomax distribution 

Consider the pdf 𝑔(𝑥) =
𝑎

𝑏
(1 +

𝑥

𝑏
)

−(𝑎+1)

 and cdf 𝐺(𝑥) = 1 − (1 +
𝑥

𝑏
)

−𝑎

 of the LO 

distribution with scale 𝑏 > 0 and shape 𝑎 > 0 parameters. Inserting these functions in 

(4), the pdf of the TIIGE-LO model (for 𝑥 > 0) is given by  

 𝑓(𝑥) = 𝜆𝛼
𝑎

𝑏
(1 +

𝑥

𝑏
)

−(𝑎+1)

(1 +
𝑥

𝑏
)

𝑎(𝛼+1)

exp (𝜆 (1 − (1 +
𝑥

𝑏
)

𝑎𝛼

)) 
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Figure 3: TIIGE-LO model: pdf (left), hrf (right).

 

5.2 The TIIGE-Lindley distribution 

Consider the Lindley distribution with parameter 𝜃 and the pdf and cdf (for 𝑥 > 0) is 

given by  

 𝑔(𝑥) =
𝜃2

𝜃+1
(1 + 𝑥)exp(−𝜃𝑥), 

and  

 𝐺(𝑥) = 1 −
exp(−𝜃𝑥)(1+𝜃+𝜃𝑥)

𝜃+1
. 

Inserting these expressions in (4) gives the TIIGE-L density function 

 

𝑓(𝑥) = 𝜆𝛼
𝜃2

𝜃+1
(1 + 𝑥)exp(−𝜃𝑥) (

exp(−𝜃𝑥)(1+𝜃+𝜃𝑥)

𝜃+1
)

−(𝛼+1)

                 exp (𝜆 (1 − (
exp(−𝜃𝑥)(1+𝜃+𝜃𝑥)

𝜃+1
)

−𝛼

)) .
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Figure 4: TIIGE-L distribution: pdf (left), hrf (right).

 

6. Data analysis 

In this section, we use two real data sets to compare the fits of the TIIGE-G family with 

others commonly used lifetime family of distributions. In each case, the parameters of 

models are estimated by maximum likelihood (Section 4) using the optim function in R 

program. First, we describe the data sets and give the MLEs (the corresponding standard 

errors) of the model parameters and the values of the Akaike Information Criterion 

(AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion 

(BIC), Hannan-Quinn information criterion (HQIC) and Anderson-Darling (𝐴∗) statistics. 

The lower the values of these criteria shows the better fitted model to dataset. Its worth to 

mention that over-parametrization is penalized in these criteria. Finally, we provide the 

histograms of the data sets to have a visual comparison of the fitted density functions.  

 

 Example 1 (Failure times of Aircraft Windshield): This data set presented in Murthy 

et al. (2004) and used by some reserchers for example Elbatal et al. (2016). This data set 

present failure times for a particular windshield model including 85 observations that are 

classified as failed times of windshields. This data set is given by 0.040, 1.866, 2.385, 

3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 

0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 

2.010, 2.688, 3.924,1.281,2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 

2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480,2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 

4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,2.223, 3.114, 4.449, 

1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 

2.324, 3.376, 4.663.  

 First, we describe the descriptive statistics of the data in Table 2. In Table 3, This data 

set is fitted by four parameter TIIGE-LO distribution. The rival models for this data set 

are 4 parameter models Beta Lomax (Mead, 2016), Kumaraswamy Lomax (Elbatal and 

Kareem, 2014) and 5 parameter models McDonald Lomax (Lemonte and Cordeiro, 

2011). Table 4 present Good ness of fit critera for fitted models. This table reveals that 

the TIIGE-LO model gives a better fit to this data than the other models. 
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Table 2: Descriptive statistics of first data set.  

Mean Median Variance Skewness Kurtosis Min Max n

2.563 2.385 1.239 0.086 2.365 0.040 4.663 85

 

Table 3: Parameters estimates and corresponding standard errors for first data set. 

 
 

Table 4: Goodness of fit statistics for first data set. 

Model Goodness of fit criteria

AIC BIC HQIC CAIC A 

TIIGE-LO 264.036 273.807 267.966 264.536 0.552

B-LO 284.794 294.564 288.724 285.294 1.367

Kw-LO 270.779 280.550 274.709 271.279 0.593

Mc-LO 269.231 281.444 274.143 269.990 0.609

 

Example 2 (Glass Fiber): The second data set is given by Smith and Naylor (1987) on 

he strengths of 1.5 cm glass fibers, measured at the National Physical Laboratory, 

England . The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64,1.68, 1.73, 

1.81, 2 ,0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01,0.77, 

1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 

1.48,1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 

1.63, 1.67, 1.7, 1.78, 1.89. The summary statistics about this data set present in Table 5. 

For this data set, we use TIIGE-L distribution and rival models are with Kw-L 

(Cakmakyapan and Kadilar, 2014), Beta-L (MirMostafaee et al., 2015) and Beta 

Exponentiated-L (Rodrigues et al., 2015). Table 6 presents that the estimates and 

standard errors of models parameters. Table 7 present Goodness of fit critera for fitted 

models. This table shows that the TIIGE-L model gives a better fit to this data than the 

other distributions. 

 

 

Table 5: Descriptive statistics of second data set. 
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Mean Median Variance Skewness Kurtosis Min Max n

1.507 1.590 0.105 0.899 3.923 0.550 2.440 63

 

Table 6: Parameters estimates and corresponding standard errors for second data set. 

 
 

Table 7: Formal goodness of fit statistics for second dataset 

Model Goodness of fit criteria

AIC BIC HQIC CAIC A 

TIIGE-L 36.169 42.599 38.698 36.576 0.841

B-L 50.310 56.740 52.839 50.717 2.783

Kw-L 36.839 43.268 39.368 37.246 1.363

BE-L 38.104 46.676 41.475 38.793 1.259
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Figure 5: Fitted pdfs on histogram of first and second data sets.

 

7. Conclusions 

A new class of distributions called the Type II General Exponential class is introduced 

and studied. We provide a comprehensive treatment of some of its mathematical 

properties including ordinary and incomplete moments, generating function, asymptotics, 
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order statistics and the QS order, moment of residual life and reversed residual life. We 

estimate the model parameters by the maximum likelihood method. We assess the 

performance of the maximum likelihood estimators in terms of biases and mean squared 

errors by means of a simulation study. The potentiality of the proposed models is 

illustrated by means of three real data sets. 

 

References  

1. Afify A. Z., Alizadeh, M., Yousof, H. M., Aryal, G. and Ahmad, M. (2016a). The 

transmuted geometric-G family of distributions: theory and applications. Pak. J. 

Statist., forthcoming. 

2.  Afify A. Z., Cordeiro, G. M., Yousof, H. M., Alzaatreh, A. and Nofal, Z. M. 

(2016b). The Kumaraswamy transmuted-G family of distributions: properties and 

applications. J. Data Sci., forthcoming. 

3. Afify, A.Z., Yousof, H. M. and Nadarajah, S. (2016c). The beta transmuted-H 

family of distributions: properties and applications. Stasistics and its Inference, 

forthcoming. 

4. Alizadeh, M., Cordeiro, G. M., Nascimento, A. D. C. Lima M. D. S. and Ortega, 

E.M.M. (2016a). Odd-Burr generalized family of distributions with some 

applications. Journal of Statistical Computation and Simulation, 83, 326-339. 

5. Alizadeh, M., Yousof, H. M., Afify A. Z., Cordeiro, G. M., and Mansoor, M. 

(2016b). The complementary generalized transmuted poisson-G family. Austrian 

Journal of Statistics, forthcoming. 

6. Alzaatreh, A., Lee, C. and Famoye, F. (2013). A new method for generating 

families of continuous distributions. Metron, 71, 63-79. 

7. Cakmakyapan, S. and Kadilar, G.O. (2014). A New Customer Lifetime Duration 

Distribution:The Kumaraswamy Lindley Distribution. International Journal of 

Trade, Economics and Finance, 5, 441-444. 

8. Cook, R. D., Weisberg, S. (1994), An Introduction to Regression Graphics. John 

Wiley. 

9. Cordeiro, G. M., Alizadeh, M. and Diniz Marinho, P. R. (2016a). The type I half-

logistic family of distributions. Journal of Statistical Computation and Simulation, 

86, 707-728. 

10. Cordeiro, G. M., Alizadeh, M., Ortega, E. M. and Serrano, L. H. V.(2016b). The 

Zografos-Balakrishnan odd log-logistic family of distributions: Properties and 

Applications. Hacet. J. Math. Stat., forthcoming. 

11. Cordeiro, G. M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E. M. M. and 

Altun, E. (2016c). The generalized odd log-logistic family of distributions: 

properties, regression models and applications, Journal of Statistical Computation 

and Simulation, http://dx.doi.org/10.1080/00949655.2016.1238088. 

12. Cordeiro, G. M., Alizadeh, M., Tahir, M. H., Mansoor, M., Bourguignon, M. and 

and Hamedani G.G. (2016d). The beta dd log-logistic generalized family of 

distributions, Hacettepe Journal of Mathematics and Statistics, Forthcoming. 

13. Elbatal, I. and Kareem, A. (2014). Statistical Properties of Kumaraswamy 

Exponentiated Lomax Distribution. Journal of Modern Mathematics and 

Statistics, 8, 1-7. 

14.  Elbatal, I. and Mansour, M. M. (2016). The Additive Weibull-Geometric 

Distribution: Theory and Applications. Journal of Statistical Theory and 

Applications, 15, 125-141. 



G.G. Hamedani, Mahdi Rasekhi, Sayed Najibi, Haitham Yousof, Morad Alizadeh 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp503-523 520 

15. Glänzel, W. (1987). A characterization theorem based on truncated moments and 

its application to some distribution families, Mathematical Statistics and 

Probability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, 75-84. 

16. Glänzel, W. (1990). Some consequences of a characterization theorem based on 

truncated moments, Statistics: A Journal of Theoretical and Applied Statistics, 21, 

613-618. 

17. Gupta, P. K., Singh, B. (2013). International Journal of System Assurance 

Engineering and Management. International Journal of System Assurance 

Engineering and Management, 4: 378-385. 

18. Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by 

Lehmann alternatives. Commun. Stat. Theory Methods, 27, 887-904. 

19. Gupta, R. D. and Kundu, D. (1999). Generalized exponential distributions. 

Australian and New Zealand Journal of Statistics, 41, 173–188. 

20. Hamedani, G. G. (2013).  On certain generalized gamma convolution distributions 

II, Technical Report, No. 484, MSCS, Marquette University. 

21.  Korkmaz, M. C. and Genc, A. I. (2016). A new generalized two-sided class of 

distributions with an emphasis on two-sided generalized normal distribution. 

Communications in Statistics 

22. Kotz, S., Lai, C. D. and Xie, M. (2003). On the effect of redundancy for systems 

with dependent components.” IIE Trans, 35, 1103–1110. 

23. Kotz, S. and Seier, E. (2007). Kurtosis of the Topp Leone distributions. Interstat, 

1-15. 

24. Lee, C., Famoye, F. and Olumolade, O. (2007).Beta-Weibull Distribution: Some 

Properties and Applications to Censored Data. Journal of Modern Applied 

Statistical Methods, 6, 173-186. 

25. Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and 

Applications of Fractional Difierential Equations. Elsevier, Amsterdam. 

26. Kumaraswamy, P. (1980). A generalized probability density function for double 

bounded random processes. Journal of Hydrology, 46, 79–88. 

27. Lemonte, A. J. and Cordeiro, G. M. (2013). An extended Lomax distribution. 

Statistics: A Journal of Theoretical and Applied Statistics , 47, 800-816. Lemonte, 

A.J., Barreto-Souza, W. and Cordeiro, G. M. (1013). The exponentiated 

Kumaraswamy distribution and its log-transform. Brazilian Journal of Probability 

and Statistics, 27, 31-53. 

28. Marshall, A. W. and Olkin, I. (1997). A new methods for adding a parameter to a 

family of distributions with application to the Exponential and Weibull families. 

Biometrika, 84, 641-652. 

29. Mathai, A. M. and Saxena, R. K. (1978). The H-Function with Applications in 

Statistics and Other Disciplines. John Wiley and Sons, New York. 

30. Mead, M.E. (2016). On Five-Parameter Lomax Distribution:Properties and 

Applications. Pakistan Journal of Statistics and Operation Research, 12, 185-199. 

31. Merovci, F., Alizadeh, M., Yousof, H. M. and Hamedani G. G. (2016). The 

exponentiated transmuted-G family of distributions: theory and applications. 

Commun. Stat. Theory Methods, Forthcoming. 

32. MirMostafaee, S. M. T. K., Mahdizadeh, M. and Nadarajah, S. (2015). The beta 

Lindley distribution. Journal of Data Science, 13, 603-626. 



Type II General Exponential Class of Distributions 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp503-523 521 

33. Mudholkar, G. S. and Srivastava, D. K. (1993). Exponentiated Weibull family for 

analysing bathtub failure rate data. IEEE Transactions on Reliability, 42, 299–

302. 

34. Mudholkar, G.S., Srivastava, D.K. and Freimer, M. (1995). The exponentiated 

Weibull family: a reanalysis of the bus-motor-failure data. Technometrics, 37, 

436–445. 

35. Murthy, D. N. P., Xi, M. and Jiangs, R. (2004). Weibull models, Wiley, Hoboken. 

36. Nadarajah, S. (2005). The exponentiated Gumbel distribution with climate 

application. Environmetrics, 17, 13–23. 

37. Nadarajah, S. and Gupta, A.K. (2007). The exponentiated gamma distribution 

with application to drought data. Calcutta Statistical Association Bulletin, 59, 29–

54. 

38. Nadarajah, S. and Kotz, S. (2003). Moments of some J-shaped distributions. 

Journal of Applied Statistics, 30, 311-317. 

39. Nadarajah, S. and Kotz, S. (2006). The exponentiated-type distributions. Acta 

Applicandae Mathematicae, 92, 97–111. 

40. Nadarajah, S., Cordeiro, G. M. and Ortega, E. M. M. (2013). The exponentiated 

Weibull distribution: A survey, Statistical Papers, 54, 839–877. 

41.  Nadarajah, S., Cordeiro, G. M. and Ortega, E. M. (2015). The Zografos 

Balakrishnan-G family of distributions: Mathematical properties and applications. 

Communications in Statistics-Theory and Methods, 44, 186-215. 

42.  Nofal, Z. M., Afify, A. Z., Yousof, H. M. and Cordeiro, G. M. (2015). The 

generalized transmuted-G family of distributions. Commun. Stat. Theory 

Methods, forthcoming. 

43. Nichols, M. D. and Padgett, W. J. (2006). A bootstrap control chart for Weibull 

percentiles.Quality and Reliability Engineering International, 22, 141-151. 

44. Rodrigues, J. A., Silva, A. P. C. M., Hamedani, G. G.(2015). The beta 

exponentiated Lindley distribution. Journal of Statistical Theory and Applications, 

14, 60-75. 

45. Rezaei, S., Sadr, B.B., Alizadeh, M. and Nadarajah, S. (2016). Topp-Leone 

generated family of distributions: Properties and applications, Communications in 

Statistics-Theory and Methods, forthcoming. 

46. Shanker, R. (2015). Shanker Distribution and Its Applications. International 

Journal of Statistics and Applications, 5, 338-348. 

47. Shaw, W. T. and Buckley, I. R. C. (2007). The alchemy of probability 

distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal 

distribution from a rank transmutation map. Research report. 

48. Shirke, D. T and Kakade, C.S. (2006). On exponentiated lognormal distribution. 

International Journal of Agricultural and Statistical Sciences, 2, 319–326. 

49. Sindhu, T. N., Saleem, M. and Aslam, M. (2013). Bayesian estimation for Topp 

Leone distribution under trimmed samples. Journal of Basic and Applied 

Scientific Research, 3, 347-360. 

50.  Silva, F. G., Percontini, A., de Brito, E., Ramos, M.W., Venancio, R. and 

Cordeiro, G. M. (2016). The odd Lindley-G family of distributions, Austrian 

Journal of Statistics, VV, 1–xx. 

51. Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and 

Bayesian estimators for the three-parameter Weibull distribution. Journal of 

Mechanical Science and Technology, 36, 358-369 



G.G. Hamedani, Mahdi Rasekhi, Sayed Najibi, Haitham Yousof, Morad Alizadeh 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp503-523 522 

52. Srivastava, H. M., Gupta, K. C. and Goyal, S. P. (1982). The H-Functions of One 

and Two Variables with Applications. South Asian Publishers, New Delhi. 

53. Tahir, M. H., Cordeiro, G.M., Alzaatreh, A., Mansoor, M. and Zubair, M. 

(2016a). The logistic-X family of distributions and its applications. Commun. 

Stat. Theory Methods, forthcoming. 

54. Tahir, M. H., Zubair, M., Mansoor, M., Cordeiro, G.M., Alizadeh, M. amd 

Hamedani, G.G. (2016b). A new Weibull-G family of distributions. Hacet. J. 

Math. Stat., forthcoming. 

55.  Weibull, W. (1951). A statistical distribution function of wide applicability. J. 

Appl. Mech. Trans, 18, 293–297. 

56. Wright, E. M. (1935). The asymptotic expansion of the generalized 

hypergeometric function. Journal of the London Mathematical Society, 10, 286-

293. 

57. Yousof, H. M., Afify, A. Z., Hamedani, G. G. and Aryal, G. (2016). the Burr X 

generator of distributions for lifetime data. Journal of Statistical Theory and 

Applications, forthcoming.  

 

  



Type II General Exponential Class of Distributions 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp503-523 523 

Appendix A 

 

Theorem 1.  Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval 

for some  𝑑 < 𝑒  (𝑑 = −∞, 𝑒 = ∞  mightaswellbeallowed). Let 𝑋: Ω → 𝐻  be a 

continuous random variable with the distribution function 𝐹 and let 𝑞1 and 𝑞2 be two real 

functions defined on 𝐻 such that 

 𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝐄[𝑞1(𝑋)|𝑋 ≥ 𝑥]𝜂(𝑥),    𝑥 ∈ 𝐻, 
is defined with some real function 𝜂. Assume that 𝑞1, 𝑞2 ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation 𝜂𝑞1 = 𝑞2 has no real solution in the interior of 𝐻. Then 𝐹 is 

uniquely determined by the functions 𝑞1, 𝑞2 and 𝜂 , particularly 

 𝐹(𝑥) = ∫
𝑥

𝑎
𝐶 |

𝜂′(𝑢)

𝜂(𝑢)𝑞1(𝑢)−𝑞2(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 

where the function  𝑠  is  a solution of the differential equation 𝑠′ =
𝜂′𝑞1

𝜂𝑞1−𝑞2
 and 𝐶 is the 

normalization constant, such that ∫
𝐻

𝑑𝐹 = 1. We like to mention that this kind of 

characterization based on the ratio of truncated moments is stable in the sense of weak 

convergence (see, Glänzel 1990), in particular, let us assume that there is a sequence  
{𝑋𝑛}  of random variables with distribution functions  {𝐹𝑛}  such that the functions  𝑞1,𝑛, 

𝑞2,𝑛 and  𝜂𝑛 (𝑛 ∈ ℕ)  satisfy the conditions of Theorem 1 and let  𝑞1,𝑛 → 𝑞1 , 𝑞2,𝑛 → 𝑞2  

for some continuously differentiable real functions  𝑞1 and   𝑞2.  Let, finally,  𝑋  be a 

random variable with distribution  𝐹 .  Under the condition that  𝑞1,𝑛(𝑋)  and 𝑞2,𝑛(𝑋)  are 

uniformly integrable and the family  {𝐹𝑛} is relatively compact, the sequence  𝑋𝑛 

converges to  𝑋  in distribution if and only if  𝜂𝑛 converges to  𝜂 , where 

 𝜂(𝑥) =
𝐸[𝑞2(𝑋)|𝑋≥𝑥]

𝐸[𝑞1(𝑋)|𝑋≥𝑥]
. 

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions  𝑞1 , 𝑞2  and  𝜂 , respectively.  It 

guarantees, for instance, the ’convergence’ of characterization of the Wald distribution to 

that of the Lévy-Smirnov distribution if  𝛼 → ∞ , as was pointed out in Glänzel and 

Hamedani (2001). 

A further consequence of the stability property of Theorem 1 is the application of this 

theorem to special tasks in statistical practice such as the estimation of the parameters of 

discrete distributions.  For such purpose, the functions  𝑞1, 𝑞2  and, specially,  𝜂  should 

be as simple as possible.  Since the function triplet is not uniquely determined it is often 

possible to choose  𝜂  as a linear function.  Therefore, it is worth analyzing some special 

cases which helps to find new characterizations reflecting the relationship between 

individual continuous univariate distributions and appropriate in other areas of statistics. 

In some cases, one can take 𝑞1(𝑥) ≡ 1, as we did in Proposition 3.1, which reduces the 

condition of Theorem 1 to  𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝜂(𝑥),    𝑥 ∈ 𝐻. We, however, believe that 

employing three functions 𝑞1 , 𝑞2  and  𝜂 will enhance the domain of applicability of 

Theorem 1. 


