
Pak.j.stat.oper.res.  Vol.X  No.4 2014  pp417-433 

Bayesian Prediction under a Finite Mixture of  

Generalized Exponential Lifetime Model 

M. Mahmoud 

Department of Mathematics 

Faculty of Science, Ain Shams University 

Cairo, Egypt 

mmahmoud46@hotmail.com 

 

Elsayed H. Saleh 

Department of Statistics 

Faculty of Science, King Abdul-Aziz University 

Jeddah, Saudi Arabia 

noushed7000@yahoo.com  

 

Shaymaa M. Helmy 

Department of Mathematics 

Faculty of Science, Ain Shams University 

Cairo, Egypt 

shaymaa_moh_helmy@hotmail.com 

Abstract 

In this article a heterogeneous population is represented by a mixture of two generalized exponential 

distributions. Using the two-sample prediction technique, Bayesian prediction bounds for future order 

statistics are obtained based on type II censored and complete data. A numerical example is given to 

illustrate the procedures and the accuracy of the prediction intervals is investigated via extensive Monte 

Carlo simulation. 
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1. Introduction 

Recently generalized exponential distribution has received considerable attention. Two-

parameter generalized exponential distribution GE(   ) was originally introduced by 

(Gupta & Kundu, 1999) as a skewed distribution, and as an alternative to Weibull, 

gamma and log-normal distributions, and studied its different properties. It is observed 

that GE(   ) distribution can be used quite effectively to analyze skewed data. Extensive 

work has been done by several authors on GE(   ) distribution. Some of the recent 

references on GE(   ) distribution are (Gupta & Kundu, 2001), (Gupta & Kundu, 2002), 

(Jaheen, 2004), (Raqab & Madi, 2005), (Kundu, et al., 2005), (Gupta & Kundu, 2007), 

(Kundu & Gupta, 2008), (Kundu & Pardhan, 2008) and (Kim & Song, 2010). 
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The analysis of finite mixture models has received an increasing attention during the last 

years. Finite mixture models have been much studied both theoretically and practically 

by several authors e.g.: (Everitt & Hand, 1981), (Tittergington, et al., 1985), (McLachlan 

& Peel, 2000). A finite mixture of some suitable probability distribution is recommended 

to study a population that is supposed to comprise a number of subpopulations mixed in 

an unknown proportion. Finite mixture models have been successfully applied to several 

fields of knowledge, such as economics, biology, medicine and engineering. (Ateya, 

2012a) proved the identifiability of a finite mixture of generalized exponential 

distributions and obtained maximum likelihood estimates of the parameters, using EM 

algorithm, based on a general form of right censored failure times. (Ali, et al., 2012) 

provide Bayesian estimation of the mixture of generalized exponential distribution using 

censored sample under different loss functions. 

 

Complete knowledge on the lifetimes or failure times of all the experimental units may 

not be available for many reasons. In many studies, experiments often must terminate 

before all units on test have failed. In such cases exact lifetimes are known for only a 

portion of the units under study and the remainder of the lifetimes is known only to 

exceed certain values. Such data are called censored. One of the most common censoring 

schemes is type II censoring. In type II censoring, a total of   units are put on a life test, 

but instead of continuing until all    units have failed, the life test stopped at the time of 

the     (     ) unit failure. See (Zheng, 2002), (Sarhan, 2007) and 

(Yarmohammadi, 2010). 

 

In many practical problems of statistics, one wishes to infer the value of unknown 

observable that belongs to a future sample by using current available information known 

as the informative sample. One way to do this is to construct an interval, which will 

contain these results with a specified probability. This interval is called prediction 

interval. Prediction has been applied in medicine, engineering, business, and other areas 

as well. For details on the history of statistical prediction, analysis and applications, see 

for example, (Aitchison & Dunsmore, 1975), (Geisser, 1993). 

 

(Jaheen, 2003) studied Bayesian prediction under a finite mixture of two component 

Gompertz lifetime model, based on type-I censored sample. (Ateya, 2011) discussed 

Bayesian prediction under generalized exponential distribution based on one and two 

sample schemes using MCMC algorithm. (Ateya, 2012b) obtained Bayesian prediction 

intervals of future nonadjacent generalized order statistics from generalized exponential 

distribution using Markov chain Monte Carlo method. (Ateya & Rizk, 2013) discussed 

Bayesian prediction intervals (BPI’s) of future generalized order statistics under a finite 

mixture of two components of generalized exponential distributions based on a type II 

censored samples. 

 

In this article, Bayesian prediction bounds for the     future observable from a 

heterogeneous population represented by a finite mixture of two components generalized 

exponential lifetime model, based on type-II censored and complete data, and using the 

two-sample prediction technique, are obtained. Prediction bounds are obtained when the 

parameters    and    are assumed to be known. The accuracy of prediction intervals is 

investigated via Monte Carlo simulation. In section 2, the generalized exponential 
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distribution GED and the mixture of two generalized component are defined. The 

Bayesian prediction bounds of future observables based on type-II censored and complete 

data are studied in section 3. In section 4, examples for samples generated from the 

mixture model are given and a simulation study is performed to illustrate the 

computations of the obtained results. Finally, some comments and concluding remarks 

are given in section 5. 

2. The Generalized Exponential Distribution and Its Mixture Model 

The probability density function (pdf), cumulative distribution function (cdf) and 

reliability function of GE(   ) are given, respectively, by: 

 ( )    (      )
   

                                (2.1) 

 ( )  (      )
 
                                             (2.2)      

   ( )    (      )
 
                                    (2.3) 

Where   is a shape parameter and 𝛌 is the reciprocal of the scale parameter.  

 

A random variable    is said to follow a finite mixture distribution with   components, if 

the density function of    can be written in the form: 

 ( )  ∑    ( ) 

 

   

                                                                                                      (   ) 

 

Where    is a non-negative real number (known as the     mixing proportion) such that 

∑      
    and    is a density function of the      component;            . 

 

The corresponding cdf is given by: 

 ( )  ∑    ( ) 

 

   

                                                                                                      (   ) 

Where   ( ) is the      cdf component. 

 

The reliability function of the mixture is given by: 

 ( )  ∑    ( ) 

 

   

                                                                                                     (   ) 

Where   ( ) is the     reliability component. 

 

A finite mixture of two-component generalized exponential lifetime model may describe 

a heterogeneous population. The pdf of a finite mixture of two GE (     ),       

components is given by: 

  (               )     (       )  (   )  (       )                          (   ) 
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Where,         and for          ( ) are given by (2.1) after indexing         by  .  

 

Figure 1:   The pdf    (               )  of a finite mixture of two  

GE(     ),       and its components   (       )  and    (       )  

with                                  . 

3. Posterior Distributions and Bayesian Two-sample Prediction  

In this section, we present the posterior densities of the parameters       and   as well as 

the Bayesian prediction distribution for the future failure times, based on the observed 

type-II censored and complete data, when    and    are known. 

 

When the parameters    and    are assumed known, we suppose that             are 

independent random variables. The joint prior pdf of the vector (       ) is thus given 

by: 

 (       )    (  )  (  )  ( )                                                                     (   ) 

 

Where   (  ) is the prior pdf of           and   ( ) is a prior pdf of  . Let 

  ( )                 and the random variables          are assumed to follow the 

gamma density with parameters (     ). 

Then: 

  (  )  
  

    
    

⌈  
                                            

          ( )   

}             (   ) 

3.1 Bayesian Prediction Based on Type-II Censored Data 

Suppose that   units from a population with pdf of a finite mixture of two GE(     ); 

       components given by (2.7) are subjected to a life testing experiment, and that the 

test is terminated after some fixed predetermined number of failures  . It is assumed that 
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an item can be attributed to the appropriate subpopulation after it had failed. Then   units 

have failed during the interval (   ( )):    from the first and    from the second 

subpopulation, such that           and     units which cannot be identified as to 

subpopulation are still functioning. Let     denotes the failure time of the     unit that 

belongs to the     subpopulation and      ( )                    . See (Jaheen, 

2003) based on such scheme of sampling, the likelihood function as described by 

(Mendenhall & Hader, 1958), is given by: 

 (               )

 
  

(   ) 
 *∏   (         )

   

   

+  *∏(   )  (         )
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 [ ( ( ))]
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∑       (   )   ∏    (     ) 

 
                         (3.3) 

 

Where:   (                        ) and for           
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From Eqs. (   ) and (   )  the posterior pdf of             given   based on type-II 

censored data is given by: 

 (       | )    [∑   
 

   (   )  

 ∏[(  )
                

   (    ( ))
    

]

 

   

]                                       (   ) 

 

   is a normalizing constant given by: 

  
   ∫∫ ∫  (       | )
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And: 

      ∫(  )
                

   (    ( ))
    

   

 

 

 

 ∫(  )
                  

 

 

 

 
⌈(      )

  
(      )

 

Where: 

      ∑  

   

   

(         )      (       ( )) 

 

A future sample of size   is assumed to be independent of the informative sample of size 

  and is obtained from the same population with pdf (2.7). Predictions are made for the 

    order statistic in the future sample based on the informative sample. This is the two-

sample prediction technique. Let    be the ordered lifetime of the     components to fail 

in a future sample of size        . The     order statistic in a sample of size   

represents the life length of a (     ) out of   system. The distribution function of 

   is given by: (see (Arnold, et al., 2008), (Jaheen, 2003)) 
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Where   (  |       )     (  ) is the distribution function of the mixture model and 

 (  ) is the reliability function of the mixture model after replacing t by     
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Applying the binomial expansion, we get: 
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The Bayes predictive pdf of    given   is defined by: 

  (  | )  ∫ ∫ ∫  (  |       )
 

 

 

 

 

 

 (       | )                         (   ) 

 

Where  (       | ) is the posterior pdf and  (  |       ) is the pdf of the     

component in a future sample which can be obtained from (2.7). 

 

Bayesian prediction bounds for    can be obtained, for a given value of  , by computing: 
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Where    
( |       ) is the cumulative distribution function of     component in the 

future sample given by (2.7). 

Therefore: 
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Where: 

  
     ∑  

   

   

(         )      (       ( ))      (       ) 

3.2  Bayesian Prediction Based on Complete Data 

Suppose that  -units from a population with pdf of a finite mixture of two GE(     ); 

      components (1.7) are subjected to a life testing experiment and that the test is 

terminated after the failure of all   items. It is assumed that an item can be attributed to 

the appropriate subpopulation after it had failed. Then the  -units have failed during the 

interval(   ( )):   from the first and     from the second subpopulation. 

 

Let     denote the failure of the     unit that belongs to the     subpopulation and 

     ( ) ;             ;       ;      and         Where 

 ( )                                           
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Based on such scheme of sampling, the likelihood function is given by: 
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It follows, from Eqs. (3.2) and (3.12), that the posterior density of             given   

based on complete data is given by: 
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Bayesian prediction bounds for    are obtained by evaluating   [    | ], for a given 

value of  , it follows from eq. (3.9) that: 
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Using (3.10) and (3.16), a 100 % prediction interval for    is then given by: 

 [ ( )      ( )]                                                                    
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Where  ( ) and  ( ) are obtained, respectively, by solving the following two equations: 

 [ ( )    ]  
   

 
 [    ( )]  

   

 
                                            (    ) 

4. Numerical Computation 

In this section, algorithms used to generate type-II censored and complete samples are 

given, a numerical example is given to illustrate the results and the accuracy of the 

prediction intervals is investigated via Monte Carlo simulations. 

4.1 Generation Algorithms 

Failure-censored samples: 

The algorithm to generate a pseudorandom failure-censored sample (type-II censored) 

with   units and   failures is as follows (see (William & Luis, 1998)): 

1. Generate          pseudorandom observations from UNIF(0,1) 

2. Compute the uniform pseudorandom order statistics: 

 ( )    [   ( )]  (    )
 

 ⁄            ( )    

 ( )    [   ( )]  (    )
 

(   )⁄
  

 ( )    [   (   )]  (    )
 

(     )⁄
 

3. The pseudorandom  sample from  (   ) is: 
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For generalized exponential distribution with cdf  (     )  (      )
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 ⁄ )               

In case of mixture of two components: 

If      
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Otherwise: 

 ( )   
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⁄ ) 

For the case of complete sample we are using the same algorithm with      
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4.2  Example 

The following complete sample (    ) has been generated from the mixture model of 

two generalized exponential distributions with                            

     (See Figure 1). 

{1.08522, 1.43312, 2.48984, 2.65207, 3.18065, 3.26202, 3.31147}  (    ) 

{0.39141, 0.922536, 1.02482, 1.21247, 1.28588, 1.45316, 1.52692, 2.03428, 2.10718, 

2.4974, 3.39261, 4.3734, 5.00216}         (     ) 

 

Also the following type-II censored sample (         ) has been generated from 

the mixture model of two generalized exponential distributions with the same parameters. 

{0.176573, 0.319349, 0.560964} (    ) 

{0.445624, 0.676239, 0.904488, 0.987053, 1.13092, 1.21349, 1.36661}   (    ) 

4.3  Monte Carlo Simulation 

The behavior of the Bayes prediction bounds derived in section 3 is investigated via 

Monte Carlo simulations according to the following steps: 

1. Making use of the vector of actual parameters                       

          (see Figure 1) and for a given values of the prior parameters    

                              , 1000 samples (                     ) of 

different sizes   were generated from the mixture model of two generalized 

exponential with pdf (2.7) in case of complete data and also were generated for 

different values of    in case of type-II censored data using algorithm (4.1). 

2. For each sample, the 100  % Bayesian prediction interval for the unobserved value 

   was computed by solving numerically the system of equations (3.18) using 

Mathematica 7 via the routine Find Root. The lengths of the intervals were 

obtained. 

3. The simulated coverage probabilities (CP), the average lower limits, the average 

upper limits (L,U) and the average interval lengths (AL) from the 1000 samples 

were computed. 

4. Steps 1-3 were performed for                      in case of complete sample 

(table 1, 2 & 3) and for        in case of type-II censoring sample (table 4). 
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Table 1:  Two sample 90% Bayesian prediction interval (BPI), simulated coverage 

probability (CP), average interval length (AL), average lower limit (L), 

and average upper limit (U), for        (
 

 
    

   

 
)     from 1000 

complete samples for different sample sizes   and different future sample 

sizes   

   

      AL         CP                     (L,U) 

   

      AL        CP                     (L,U) 

   

      AL          CP                     (L,U) 

    

 

 

4.70999  0.896364 (               ) 

 

4.68701  0.901387  (               ) 

 

4.64995  0.897544  (               ) 

2.3264   0.898441  (                ) 

 

2.23691  0.895451  (                ) 

 

2.19089  0.90083    (                ) 

1.52357   0.894977  (                ) 

 

1.47063   0.900596  (                ) 

 

1.43898   0.896125  (                ) 

 

 

5 

 

10 

 

15 

 

20 

   

      AL       CP                     (L,U) 

   

     AL          CP                     (L,U) 

   

      AL          CP                     (L,U) 

    

4.8347   0.894736  (               ) 

 

4.79201  0.897378  (               ) 

 

4.77593  0.895302  (               ) 

 

4.76084  0.898876  (               ) 

1.72682  0.900654  (                ) 

 

1.62273  0.894326  (             ) 

 

1.56545  0.899717  (                ) 

 

1.52632  0.894637  (                ) 

1.08825   0.892965  (               ) 

 

1.03719   0.896857 (                 ) 

 

1.00899   0.897963 (                 ) 

 

0.992403  0.901625  (               ) 

 

 

 

10 

 

 

10 

 

15 

 

20 

 

25 

   

      AL         CP                     (L,U) 

   

      AL         CP                     (L,U) 

   

      AL            CP                     (L,U) 

    

4.83324  0.898049  (               ) 

 

4.82498  0.896674  (               ) 

 

4.81101  0.897679  (               ) 

1.38938  0.900952  (                ) 

 

1.32348  0.894961  (               ) 

 

1.28099  0.899637  (                ) 

0.859737  0.900848   (                  ) 

 

0.829055  0.899935    (                  ) 

 

0.814188  0.893147    (                  ) 

 

 

15 

 

 

15 

 

20 

 

25 

Table 2:  Two sample 95% Bayesian prediction interval (BPI), simulated coverage 

probability (CP), average interval length (AL), average lower limit (L) 

and average upper limit (U), for        (
 

 
    

   

 
)     from 1000 

complete samples for different sample sizes   and different future sample 

sizes   

   

   AL              CP                     (L,U) 

   

    AL           CP                     (L,U) 

   

   AL            CP                     (L,U) 

    

5.79815  0.950846  (               ) 

 

5.75177  0.947511  (               ) 

 

5.73059  0.950217  (               ) 

2.79574  0.943224  (                ) 

 

2.69362  0.943447  (                ) 

 

2.6393   0.948225  (               ) 

1.79637  0.950026  (                ) 

 

1.73395  0.949209  (                ) 

 

1.70154  0.948106  (                 ) 

 

 

5 

 

10 

 

15 

 

20 

   

   AL           CP                     (L,U) 

   

   AL            CP                     (L,U) 

   

      AL         CP                     (L,U) 

    

5.93527  0.947495  (               ) 

 

5.89988  0.949964  (               ) 

 

5.86573  0.943478  (               ) 

 

5.85423  0.953462  (             ) 

2.06192  0.944242  (                ) 

 

1.94064   0.944264  (                ) 

 

1.87145  0.945398  (               ) 

 

1.83012  0.949189  (                ) 

1.25921  0.948961  (                 ) 

 

1.20907  0.950941  (                 ) 

 

1.18533  0.947614  (                 ) 

 

1.16303 0.948546  (                 ) 

 

 

 

10 

 

 

10 

 

15 

 

20 

 

25 

   

   AL           CP                     (L,U) 

   

  AL            CP                     (L,U) 

   

      AL         CP                     (L,U) 

    

5.95059  0.950825  (               ) 

 

5.94215  0.948965  (              ) 

 

5.9265   0.953689  (               ) 

1.65906  0.942709  (                ) 

 

1.57802  0.952383  (                ) 

 

1.53014  0.949727  (                ) 

1.00495  0.952518  (                   ) 

 

0.976104  0.949168  (                 ) 

 

0.957671  0.948115  (                 ) 

 

 

15 

 

 

15 

 

20 

 

25 
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Table 3:  Two sample 99% Bayesian prediction interval (BPI), simulated coverage 

probability (CP), average interval length (AL), average lower limit (L) 

and average upper limit(U), for        (
 

 
    

   

 
)     from 1000 

complete samples for different sample sizes   and different future sample 

sizes   

   

    AL          CP                     (L,U) 

   

     AL          CP                     (L,U) 

   

      AL          CP                     (L,U) 

    

8.19861  0.990723  (               ) 

 

8.12556  0.987958  (               ) 

 

8.10997  0.988774  (               ) 

3.74338  0.987483  (               ) 

 

3.62974  0.987625  (                ) 

 

3.56137  0.986475  (               ) 

2.29251  0.987181  (                  ) 

 

2.24326  0.990664  (                 ) 

 

2.22371  0.982906  (               ) 

 

 

5 

 

10 

 

15 

 

20 

   

      AL         CP                     (L,U) 

   

    AL            CP                     (L,U) 

   

      AL         CP                     (L,U) 

    

8.36944  0.991596  (               ) 

 

8.33296  0.990577  (               ) 

 

8.31547  0.980595  (               ) 

 

8.27781  0.986975  (               ) 

2.73843  0.987565    (                ) 

 

2.57675  0.988676   (                ) 

 

2.48987  0.98664     (                ) 

 

2.43492  0.991578   (                ) 

1.60624  0.983668   (                ) 

 

1.55865  0.988872   (                 ) 

 

1.51379  0.989423   (                 ) 

 

1.49131  0.987447  (                 ) 
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10 

 

15 

 

20 

 

25 

   

      AL        CP                     (L,U) 

   

      AL          CP                   (L,U) 

   

      AL           CP                     (L,U) 

    

8.4301   0.980764  (               ) 

 

8.39823  0.991406  (              ) 

 

8.35343  0.991378  (               ) 

2.19564  0.990847  (              ) 

 

2.09341  0.984503  (               ) 

 

2.02873  0.989669  (                ) 

1.28187  0.984936  (                  ) 

 

1.24128  0.983625  (                 ) 

 

1.21778  0.984581  (                 ) 

 

 

15 

 

 

15 

 

20 

 

25 

 

From tables 1, 2 & 3, we can see that for each value of   , and given values of    and    
the relation between the Bayesian prediction intervals (BPI) corresponding to 90%, 95% 

and 99% is clear. The first is a subset from the second which itself a subset of the third. 

Also the average interval width tends to decrease as   increases. The limits of the 

intervals (L,U) for the future observation    are quite relative to the apparent graph of the 

mixture in Figure 1. 

Table 4:  Two sample 95% Bayesian prediction intervals (BPI), simulated coverage 

probability (CP), average interval length (AL), average lower limit (L) 

and average upper limit (U), for             from 1000 Type-II 

censored samples for different sample sizes  , and different censoring 

value   and future sample size     

   

      AL         CP                     (L,U) 

   

      AL          CP                     (L,U) 

   

      AL          CP                     (L,U) 

    

5.86858  0.950215  (               ) 

 

5.8669   0.943727  (               ) 

 

5.86291  0.950492  (               ) 

2.83322  0.947604  (                ) 

 

2.77659  0.943945  (                ) 

 

2.74232  0.950496  (                ) 

1.81565  0.947822  (                 ) 

 

1.79981  0.944414  (                 ) 

 

1.79671  0.944121  (                 ) 

10 

 

15 

 

20 

 

 

7 

 

 

 

5.79843  0.947854  (               ) 

 

5.84322  0.947587  (               ) 

 

5.8683   0.945899   (               ) 

 

2.79726  0.94555   (               ) 

 

2.76059  0.950074  (                ) 

 

2.72886  0.952973  (               ) 

 

1.78046  0.949724  (                 ) 

 

1.76608  0.94275   (                 ) 

 

1.76286  0.949625  (                 ) 

 

10 

 

15 

 

20 

 

 

 

10 

 

From table 4, we can see that for fixed sample size  , by increasing the censoring value  , 

the average interval width tends to decrease. The limits of the intervals (L,U) for the 

future observation    are quite relative to the apparent graph of the mixture in Figure 1. 
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5. Comments and Conclusion  

In this paper, Bayesian prediction bounds for a future order statistic from the finite 

mixture of two-generalized exponential distribution are derived based on complete and 

type-II censored data. The two-sample prediction technique is used. It has been noticed, 

from Tables 1, 2, 3 and 4 that the prediction intervals are affected (getting shorter) by 

increasing  . Also the coverage probabilities are quite close to the pre-assigned 

confidence levels (90%, 95% and 99%), and therefore the intervals tend to perform very 

well in terms of simulated coverage probabilities. The average interval width tends to 

decrease as   increases. Also in case of type-II censored sample (as shown in Table 4) for 

fixed sample size  , by increasing the censoring value  , the average interval width tends 

to decrease and then the prediction intervals become better.  
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