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Abstract 

The generalization of the classical distributions is an old practice and has been considered as precious as 

many other practical problems in statistics. These generalizations started with the introduction of the 

additional location, scale or shape parameters. In the last couple of years, this branch of statistics has received 

a great deal of attention and quite a few new generalized classes of distributions have been introduced. We 

present a brief survey of this branch and introduce several new families as well. 
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1. Introduction 

The recent development in distribution theory stresses on problem solving faced by the 

researchers and proposes a variety of models so that lifetime data sets can be better assessed 

and investigated in different applied areas. In other words, there is a need to introduce 

useful models for the better exploration of the real phenomenon of nature. Nowadays, the 

trends and practices in proposing new probability models totally differ in comparison to 

the models suggested before 1997. One main objective for proposing, extending or 

generalizing (models or their classes) is to explain how the lifetime phenomenon arises in 

fields like physics, computer science, insurance, public health, medical, engineering, 

biology, industry, communications, life-testing and many others. The well-known and 

fundamental distributions such as exponential, Rayleigh, Weibull and gamma are very 

limited in their characteristics and are unable to show wide flexibility. For example, the 

exponential distribution is capable of modeling with constant hazard function, whereas, the 

Rayleigh distribution has increasing hazard function only. However, the Weibull is much 

flexible and capable of modeling with increasing, decreasing or constant hazard function. 



Ahmed, Z., Hamedani, G. G. and Butt, N.S. 

Pak.j.stat.oper.res.  Vol.XV  No.1 2019  pp87-110 88 

Unfortunately, the Weibull model is not capable of modeling with non-monotonic (such as 

unimodal, modified unimodal or bathtub shaped) failure rate function. The gamma 

distribution does not have a closed form of cumulative distribution function (cdf) which 

causes difficulties in describing its mathematical properties. For complex phenomenon in 

human mortality studies, reliability studies, lifetime testing, engineering modeling, 

electronic sciences and biological surveys, the failure rate behavior can be bathtub, upside-

down bathtub and other shaped but not usually monotone increasing or decreasing. Thus, 

in order to cope with both monotonic and non-monotonic failure rate shapes, researchers 

have proposed several generalized classes of distributions which are very flexible to study 

needful properties of the model and its fitness. In the last two decades, several 

generalization approaches were adopted and practiced, which have received increased 

attention. 

 

The objectives of the present study are three-fold: Firstly, we present an up-to-date account 

of the extended classes of distributions for the readers of modern distribution theory. 

Secondly, this survey will motivate the researchers to fill up the gap and to furnish their 

work in remaining applied areas. Thirdly, we propose some new classes of distributions 

which might be helpful as a tutorial to the beginners of the generalized modeling art.

 The rest of the article is organized as follows. In Section 2, some extended classes 

of distributions are reviewed. In section 3, we present some new families. Section 4 

presents certain characterizations of the distributions listed in Section 3. Finally, 

concluding remarks are provided in Section 5. 

 

2. Review of the existing family of distributions 

In this section, we present up-to-date review of the extended families of distributions. 

 

2.1. The exponentiated family of distributions 

Mudholkar and Srivastava (1993) proposed another method of introducing an extra 

parameter to a two-parameter Weibull distribution. The cumulative distribution function 

of the Mudholkar and Srivastava (1993)’s proposed exponentiated family has the following 

form 

( ) ( ); , ,             , 0,   ,;
a

x xG F x    =             (1) 

where 0  is an extra shape parameter. Due to the presence of an extra shape parameter, 

the proposed exponentiated distributions are more flexible than the traditional models. 

Using (1), a number of modifications of the existing distributions have been proposed in 

the literature. A brief list of these modifications is presented in Table 1: 
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Table 1: Contributed work on exponentiated distributions 

S. No. Year Distribution Author(s) 

1 2001 Exponentiated Exponential Gupta and Kundu (2001) 

2 2005 Exponentiated beta Nadarajah (2005) 

3 2005 Exponentiated Pareto Nadarajah (2005) 

4 2006 exponentiated lognormal Shirke and Kakde  (2006) 

5 2006 exponentiated Fréchet Nadarajah and Kotz (2006) 

6 2006 eexponentiated Gumbel Nadarajah (2006) 

7 2007 exponentiated Gamma Nadarajah and Gupta (2007) 

8 2011 exponentiated generalized gamma Cordeiro et al. (2011) 

9 2013 exponentiated Lomax Poisson Ramos et al. (2013) 

10 2013 exponentiated modified Weibull extension Sarhan and Apaloo (2013) 

11 2013 exponentiated generalized class Cordeiro et al. (2013) 

12 2016 exponentiated Weibull-Pareto Afify  et al. (2016) 

13 2013 exponentiated Kumaraswamy Lemonte et al. (2013) 

14 2014 Exponentiated Kumaraswamy-Dagum Huang and Oluyede (2014) 

15 2014 Exponentiated Half-Logistic family Cordeiro et al.  (2014) 

16 2015 Exponentiated Power Lindley Ashour and Eltehiwy (2015) 

17 2015 Exponentiated power Lindley Ashour and Eltehiwy (2015) 

18 2015 exponentiated generalized modified Weibull Aryal and Elbatal (2015) 

19 2015 Exponentiated Burr XII Poisson da Silva et al. (2015) 

20 2015 Exponentiated Generalized Gumbel Andrade et al. (2015) 

21 2015 exponentiated transmuted generalized Rayleigh Nofal et al. (2015) 

22 2015 exponentiated flexible Weibull extension El-Gohary et al. (2015) 

23 2016 Exponentiated Gumbel Type-2 Okorie et al.(2016) 

24 2016 Exponentiated Gompertz Generated Family Cordeiro et al. (2016) 

25 2017 Exponentiated Generalized Weibull Gompertz El-Bassiouny  et al. (2017) 

26 2017 Exponentiated power Lindley Poisson Pararai et al. (2017) 

27 2017 

Exponentiated inverse flexible Weibull 

extension 

Morshedy and El-Bassiouny 

(2017) 

28 2017 Exponentiated Lomax Geometric Hassan and Abd-Allah (2017) 

29 2018 Exponentiated Inverse Power Lindley Jan et al. (2018) 

30 2018 Exponentiated Weibull-Lomax Hassan and Abd-Allah (2018) 

 

2.2. The Marshall-Olkin family of distributions 

Marshall and Olkin (1997) pioneered a simple method of adding a single parameter to a 

family of distributions and several authors used their method to extend well-known 

distributions in the last few years. If ( );F x  and ( );F x   denote the survival function (sf) 

and cumulative distribution function of a parent distribution depending on the vector 

parameter , then the sf of Marshall and Olkin (MO) family is defined by 

( )
( )

( )
,                  

;
; ,

;
       , 0,  ,

1

F
G x

F

x
x

x

 
 


 


=  

−
            (2) 
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where, =− . Clearly, for  =, we obtain the baseline distribution, i.e., ( ) ( ); ;F x G x =

. Using (2), the extended versions of the existing distributions have been proposed. Based 

on the MO family, a detail review of the existing distributions is provided in Table 2: 

 

Table 2: Contributed work on Marshall-Olkin distributions 

S. 

No. Year Distribution Author(s) 

1 2003 Marshall Olkin Pareto Alice and Jose (2003) 

2 2005 Marshall Olkin extended Pareto Ghitany (2005) 

3 2005 Marshall Olkin semi Weibull Alice and Jose (2005) 

4 2005 Marshall Olkin Logistic Alice and Jose (2005) 

5 2005 Marshall Olkin extended Weibull Ghitany et al. (2005) 

6 2007 Marshall-Olkin gamma Ristic et al. (2007) 

7 2007 Marshall-Olkin extended Lomax Ghitany (2007) 

8 2009 Marshall-Olkin beta Jose et al. (2009) 

9 2011 Marshall-Olkin extended exponential Rao et al. (2011) 

10 2010 Marshall Olkin q-Weibull Jose et al. (2010) 

11 2011 Marshall-Olkin extended uniform Jose and Krishnu (2011) 

12 2013 Marshall-Olkin Extended Log-Logistic Gui (2013) 

13 2013 Marshall-Olkin Extended Zipf Casany and Casellas (2013) 

14 2013 Marshall-Olkin power log-normal Gui (2013) 

16 2013 Marshall-Olkin extended Weibull Cordeiro and Lemonte (2013) 

17 2014 Marshall-Olkin extended Weibull family Santos-Neto et al. (2014) 

18 2014 Marshall Olkin extended Burr type XII Al-Saiari et al. (2014) 

19 2014 Marshall-Olkin discrete uniform Sandhya and Prasanth (2014) 

20 2015 Marshall-Olkin generalized exponential Ristic and Kundu (2015) 

21 2015 Marshall–Olkin exponential Weibull Pogány et al. (2015) 

22 2016 Marshall-Olkin Extended Burr Type III Kumar (2016) 

23 2016 Marshall-Olkin Flexible Weibull Extension Mustafa et al. (2016) 

24 2016 Marshall–Olkin gamma–Weibull Saboor and Pogány (2016) 

25 2016 Marshall-Olkin Additive Weibull Afify et al. (2016) 

26 2017 Marshall-Olkin Extended Generalized Gompertz Benkhelifa (2016) 

27 2017 Marshall-Olkin Log-Logistic Extended Weibull Lepetu et al. (2017) 

28 2017 

Marshall-Olkin generalized Erlang-truncated 

exponential Okorie et al. (2017) 

29 2017 Marshall-Olkin Burr X family Jamal et al. (2017) 

30 2018 Marshall-Olkin Extended Inverse Power Lindley Hibatullah (2018) 

31 2018 Marshall-Olkin Extended Inverse Weibull Pakungwati et al. (2018) 

32 2018 Marshall-Olkin Half Logistic Yeğen and Özel (2018) 

33 2018 Marshall-Olkin generalized-G family Yousof et al. (2018) 

 

 

 

2.3. Transmuted family of distributions 
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Shaw and Buckley (2009) pioneered another prominent method of adding a parameter into 

a family of distributions and several authors used their method to extend well-known 

distributions in the last couple of years. If ( );F x   denotes the cdf of a parent distribution 

depending on the vector parameter , then the cdf of the transmuted family is given by 

( ) ( ) ( ) ( )
2

1 ,                      ; , ; ;    0,  1,   .G F xx xFx    = + −              (3) 

From (3), for 0 = , we obtain the baseline distribution, i.e., ( ) ( ); ;F x G x = . Using (3), the 

extended versions of the existing distributions have been proposed, for detail we refer to 

Tahir and Cordeiro (2016). 

 

2.4. Cubic Transmuted family of distributions 

Granzotto et al. (2017) proposed a new method of generating distributions called Cubic 

Transmutation method. Let X1, X2 and X3 be independent and identically random variables 

with distribution ( );F x  . Then, the ranking cubic transmutation map is given by 

( ) ( ) ( ) ( ) ( ) ( )
2 3

1 2 1 21 ,                    ; ,   ; ;  ,;  x x x xG F F F x       = + − + −            (4) 

with  1 0,1  and  2 1,1  − . 

Recently, Aslam et al. (2018) proposed Cubic transmuted-G family by using the T-X idea 

of Alzaatreh (2013). 

 

2.5. A General Transmuted family of distributions 

Recently, Rahman et al. (2018) proposed a general transmuted family of distributions, is 

defined by 

( ) ( ) ( )( ) ( )
1

1                      ; ,, ;  ; ;
k

i

i

i

iG x x x xF F F x     
=

= + −              (5) 

with  1,1i  − for i = 1;2; · · · ; k and 
1

1.
k

i

i

k 
=

−    The general transmuted family reduces 

to the base distribution for 0i = for i = 1;2; · · · ; k. 

 

2.6. Kumaraswamy-G family of distributions 

Kumaraswamy (1980) (for short Ku) proposed a two-parameter distribution on (0,1), called 

Kumaraswamy distribution, is defined by 

( ) ( ) ( )1 1 ,                         0,   ; 0,1 ,,xG x x
   = − −                       (6) 

where   and    are shape parameters. The density function corresponding to (6) is 

( ) ( ) ( )
1

1 1 ,           ; , ,    0,1 .g xx x x
   
−

−= −               (7) 

The Ku density has the same basic shape properties as to the beta distribution: 1   and 

1   (unimodal); 1   and 1   (bathtub); 1   and   (increasing);    and 1   

(decreasing) and  = = (constant). Using (7), for an arbitrary baseline distribution 

function ( );F x  , Cordeiro and Castro proposed the cdf of the Kumaraswamy-G (Ku-G) 

family 
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( ) ( )( )1 1 ; ,                         0,   ; , ,xG F x x


      = − −                (8) 

Using (8), a number of modifications of the existing distributions have been proposed in 

the literature. A brief list of these modifications is presented in Table 3: 

 

Table 3: Contributed work on Ku-G distributions. 

S. 

No. Year Distribution Author(s) 

1 2010 Kumaraswamy Weibull Cordeiro et al. (2010) 

2 2011 Kumaraswamy Generalized Gamma Pascoa et al. (2011) 

3 2012 Kumaraswamy-Log-Logistic Santana et al. (2012) 

4 2012 Kumaraswamy Pareto    Pereira  et al. (2012) 

5 2012 Kumaraswamy Gumbel Cordeiro et al. (2012) 

6 2012 Kumaraswamy Birnbaum-Saunders Saulo et al. (2012) 

7 2013 Kumaraswamy Generalized Lomax Shams (2013) 

8 2013 Kumaraswamy-Generalized Exponentiated Pareto Shams (2013) 

9 2013 Kumaraswamy generalized linear failure rate Elbatal (2013) 

10 2013 Kumaraswamy Pareto Elbatal (2013) 

11 2013 Kumaraswamy Burr XII Paranaba et al. (2013) 

12 2013 Kumaraswamy Generalized Pareto Nadaraja and Eljabri (2013) 

13 2014 Kumaraswamy Inverse Rayleigh Roges et al. (2014) 

14 2014 Kumaraswamy-geometric distribution Akinsete et al. (2014) 

15 2014 Kumaraswamy modified Weibull Cordeiro et al. (2014) 

16 2014 Kumaraswamy Lindley 

Merovci and Sharma  

(2014) 

17 2014 Kumaraswamy Inverse Weibull Shahbaz et al. (2014) 

18 2014 Kumaraswamy generalized Rayleigh Gomes et al. (2014) 

19 2014 Kumaraswamy exponentiated Lomax Elbatal and Kareem (2014) 

20 2015 Kumaraswamy Modified Inverse Weibull Pararai et al. (2015) 

21 2015 Kumaraswamy Lindley-Poisson Alizadeh et al. (2015) 

22 2015 Kumaraswamy odd log-logistic Alizadeh et al. (2015) 

23 2015 Kumaraswamy Modified Inverse Weibull Aryal and Elbatal (2015) 

24 2016 Kumaraswamy Gompertz Makeham Chukwu and Ogunde (2016) 

25 2016 Kumaraswamy Laplace Nassar (2016) 

26 2016 Kumaraswamy Exponentiated Inverse Rayleigh Haq (2016) 

27 2016 Kumaraswamy transmuted-G Afify et al. (2016) 

28 2016 Kumaraswamy Flexible Weibull Extension El-Damcese et al. (2016) 

29 2016 Kumaraswamy exponential Weibull Cordeiro et al. (2016) 

30 2016 Kumaraswamy generalized power Weibull Selim  and Badr (2016) 

31 2016 Kumaraswamy Weibull-G family Hassan and Elgarhy (2016) 

32 2016 Kumaraswamy-Burr Type III Behairy et al. (2016) 

33 2017 Kumaraswamy transmuted Pareto Chhetri et al. (2017) 

34 2017 Inverted Kumaraswamy AL-Fattah et al. (2017) 

35 2017 Kumaraswamy-Burr III Kumar et al. (2017) 

36 2017 Kumaraswamy Inverse Exponential Oguntunde et al. (2017) 
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S. 

No. Year Distribution Author(s) 

37 2017 

Kumaraswamy transmuted exponentiated modified 

Weibull Al-Babtain et al. (2017) 

38 2017 Kumaraswamy Half-Logistic Usman et al. (2017) 

39 2018 Kumaraswamy Exponentiated U-Quadratic Muhammad et al. (2018) 

40 2018 Kumaraswamy exponentiated Chen Khan et al. (2018) 

41 2018 Kumaraswamy odd Burr-G family Nasir et al. (2018) 

42 2018 Kumaraswamy Marshall-Olkin Log-Logistic Cakmakyapan et al. (2018) 

 

2.7. T-X Family approach 

Eugene et al. (2002) introduced the beta generated method that uses the beta distribution 

with parameters a and b as the generator to develop the beta generated distributions. The 

distribution of a beta-generated random variable X is defined as 

( ) ( )
( );

0

; , ,       , , 0, ,

F x

G r t dtx a b a b



  =                 (9) 

where r(t) is the pdf of a beta random variable and ( );F x   is the cdf of any random variable 

X.  Alzaatreh et al. (2013) proposed another method of generating families of 

continuous distributions called T-X family by replacing the beta pdf with a pdf, b(t), of a 

continuous random variable and applying a function ( ) ;W F x  that satisfies some certain 

conditions.        Using the T-X idea, 

several new classes of distributions have been introduced in the literature. Table 4 provides 

some ( );W F x    functions for some members of the T-X family. 

 

Table 4. Some members of the T-X family 

( ) ;W F x   Range of 

T 

Members of T-X family 

( );F x   [0, 1] Beta-G (Eugene et al., 2002),  Mc-G (Alexander et 

al., 2012) 

( )log ;F x −     (0, ∞) Gamma-G Type-2 (Risti´c and Balakrishnan, 

2012) 

( )log 1 ;F x − −    (0, ∞) Gamma-G Type-1 (Zografos and Balakrishnan, 

2009) 

( )

( )

;

1 ;

F x

F x



−
 

 

(0, ∞) 

 

Gamma-G Type-3 (Torabi and Montazeri, 2012) 

( )log 1 ;F x  − −   (0, ∞) Exponentiated T-X (Alzaghal et al., 2013) 

( )

( )

;
log

1 ;

F x

F x





  
 
−  

 
 

(-∞ ∞) 

 

Logistic-G (Torabi and Montazeri, 2014) 

( ) log log 1 ;F x  − −   (-∞ ∞) The Logistic-X Family (Tahir et al., 2015) 

( ) 
( )

log 1 ;

1 ;

F x

F x





− −

−
 

 

(0, ∞) 

 

New Weibull-X Family (Ahmad et al., 2018) 
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2.8. Alpha Power Transformation 

Mahdavi and Kundu (2017) proposed a new method for introducing statistical distributions 

via the cdf given by 

( )
( );

; ,             0,  1,  
1

1
.

F x

G x x


  



 

−
   = 

−
              (10) 

Using (10), some new extensions of the parent distributions have been introduced. A list 

of distributions based on alpha power transformation is provided in Table 5. 

Table 5: Contributed work on alpha power transformation. 

 

2.9. The Zubair-G family 

Recently, Ahmad (2018) proposed another method for generating new distributions via the 

cdf given by 

( )
( )

2
;

; ,             0,   
1

1
.

F x

x
e

G
e

x
 


   

−
=

−
                        (11) 

Using (11), some new modified versions of the parent distributions have been proposed. A 

list of distributions based on the Zubair-G method is provided in Table 6. 

 

Table 6: Contributed work on the Zubair-G family. 

 

 

 

 

 

S. 

No. 

Year Distribution Author(s) 

1 2017 Alpha power exponential Weibull Rahman and El-Bassiouny 

(2017) 

2 2018 Alpha power inverted exponential Unal et al. (2018) 

3 2018 Alpha power transformed Lindley Dey et al. (2018) 

4 2018 Alpha power inverse Weibull Ramadan and Walaa 

(2018) 

5 2019 Alpha power transformed inverse Lindley Dey et al. (2019) 

6 2019 Alpha power transformed Frechet Nasiru et al. (2019) 

7 2019 Alpha power transformed power Lindley Hassan et al. (2019) 

S. 

No. 

Year Distribution Author(s) 

1 2019  −Zubair-G family Kyurkchiev et al. 

(2019) 

2 2019 Zubair-G distribution with baseline Lomax Pavlov et al. (2019) 

3 2019 Zubair-G distribution with baseline  Ghosh–

Bourguignon’s extended Burr XII 

Rahneva  et al. 

(2019) 

https://www.researchgate.net/profile/Suleman_Nasiru?_sg=kbk3fP2jntdGoLlHfNgAutweNr9YHKMznKF9kRKuIWvnLJDixqet9G84Gq6u3gAaidE_e90.kCgmSSAv0UT2Tl3FFbiZuYV4V-M-XqD-FrNDxnfd6iT7dLWVwfQ5EvXqDzQ-YxHsDs8f2zDVi9DLu9nl0uSBVg
https://www.researchgate.net/profile/Suleman_Nasiru?_sg=kbk3fP2jntdGoLlHfNgAutweNr9YHKMznKF9kRKuIWvnLJDixqet9G84Gq6u3gAaidE_e90.kCgmSSAv0UT2Tl3FFbiZuYV4V-M-XqD-FrNDxnfd6iT7dLWVwfQ5EvXqDzQ-YxHsDs8f2zDVi9DLu9nl0uSBVg
https://www.researchgate.net/profile/Olga_Rahneva?_sg=WEZAzjiWFZeW92L3gpLrtfmTu2u7joazCEFk8iZTbhW3xN6pX0QHaFnxbxvAHOUs3phwcKM._XlLF9uDCMPkKhKAScrmM0cUN4TEzavg0z1jZu3_RAffPpuRPb4J2bmO3fPPsA8YigH028OsPkkyTB1wbj6TRA
https://www.researchgate.net/profile/Olga_Rahneva?_sg=WEZAzjiWFZeW92L3gpLrtfmTu2u7joazCEFk8iZTbhW3xN6pX0QHaFnxbxvAHOUs3phwcKM._XlLF9uDCMPkKhKAScrmM0cUN4TEzavg0z1jZu3_RAffPpuRPb4J2bmO3fPPsA8YigH028OsPkkyTB1wbj6TRA
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3. New Proposed Families 

As we discussed in Section 2, the distribution theory has received serious consideration in 

the literature. We carry further this branch of statistics and propose some new methods for 

generating new distributions. We can define a general form of cdf via the expression 

( )
( );

; ,             0,   
1

,
1

R x
e

G
e

x x


 
−

−
 =             (12) 

where, ( );R x  is a baseline cdf. We can also take ( );R x  as any function of cdf, which obey 

the properties of cdf, or we may combine two or more distribution functions to propose a 

new class of distributions. For the sake of simplicity we omit the dependency on the vector 

parameter and we simply write ( ) ( );R x R x = , ( ) ( );G x G x = and ( ) ( );F x F x = . From (12), 

we can also define a new function as 

( )
( )

,           
1

  0,   .
1

R x

x x
e

G
e




 

−

−
=                        (13) 

Taking ( ) ( )
2

R x F x= in (13), we arrive at the Zubair-G distribution. 

3.1. The extended Zubair-G family 

In this sub-section, we define a new family of distributions, called the extended Zubair-G 

(EZ-G) family via taking ( ) ( ) ( )
2

x x xR F F = + in (12). The cdf of the EZ-G family is given 

by 

( )
( ) ( )

2

,             0,   
1

1
,

x xF F
e

xG
e

x
 

 
 

+

+

−
 

−
=                       (14) 

where 0  and 0  are the additional parameters. The density corresponding to (14) is 

( )
( ) ( )( ) ( ) ( )

2

,           
2

   .
1

x xF F
f F ex x

x xg
e

 

 

 
+

+

+

−
=                      (15) 

Using (15), we can generate the extended version of the existing distributions. We discuss 

some special sub-models of the EZ-G class by considering ( );F x  as the cdf of the baseline 

model. In Table 7, we define ( )R x for the sub-models of the EZ-G class of distributions. 

 

Table 7: Special sub-models of the EZ-G family 

S. 

No. 

Baseline model ( )R x  Proposed model Status 

 

1 

 

Weibull 
( ) ( )

2

1 1x xe e
   − −+− −   

EZ-Weibull 

 

New 

 

2 

 

Lomax 
( )( ) ( )( )

2
1 1

1 11 1
a a

bx bx 
− − − −

− + +−+   

EZ-Weibull 

 

New 

 

3 

 

uniform ( ) ( )
2

x x 
 

+  
 

EZ-uniform 

 

New 

4 Exponential  ( ) ( )
2

1 1x xe e  − −+− −  EZ- exponential New 

5 Rayleigh ( ) ( )
2 22

1 1x xe e  − −+− −  EZ- Rayleigh New 
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3.2. The Cosine-X family of distributions 

Taking ( ) ( )1 cos
2

R F xx
 

= −  
 

in (9), we define the cosine-X family as 

( )

( )1 cos
2

,           
1

   ,
1

F x

e
G

e
x x

 
−  

  −
= 

−
                       (16) 

The pdf corresponding to (16), is given by 

( )
( )

( ) ( )
( )1 cos

2 ,           si   
1

.n
2 2

F x

g f x F x e
e

x x


 

 
−  

  
=  

−  
                                 (17) 

3.3. The Cosine exponentiated-X family of distributions 

A random variable X is said to follow the Cosine exponentiated-X distribution if its cdf is 

given by 

( )

( )1 cos
2 1

1
,             0,   ,

a
F x

x a x
e

G
e

 
−  

 


−

= 
−

           (18) 

with pdf 

( )
( )

( ) ( ) ( )
( )1 cos

1 2sin
1 2

,               .
2

a
F x

a aa
g f x F x F x ex

e
x


 

 
−  −   

=  
 


−

                (19) 

 

3.4. The extended Cosine-X family of distributions 

A random variable X is said to follow the extended Cosine-X (for short ‘EC-X’) if its cdf is 

given by 

( )

( )
2

1 cos
2

1
,             0   ,

1
,

F x

e
G

e
x x







  
−  

   −
=

−
                    (20) 

with density function 

( ) ( ) ( ) ( )
( )

2

1 cos
2

,       sin 1 cos
2

0,
21

  .
F x

g f x F x F x ex
e

x






  


  
−  

  
    

= −    
−     

               (21) 

 

3.5. The extended Cosine exponentiated-X family of distributions 

A random variable X is said to follow the extended cosine exponentiated-X (for short ‘ECE-

X’) distribution, if its cdf is given by 

6 Linear failure 

rate 
( ) ( )

2 22

1 1x x x xe e    − − − −+− −  EZ- Linear failure 

rate 

New 

 

7 

 

Pareto ( ) ( )
2

1 1
a a

x x
  
   
− + −   

   
 

 

EZ-Pareto 

 

New 

 

8 

 

Burr 
( )( ) ( )( )

2

1 1 11
a

b b
a

x x
− −

− + +−+  
 

EZ-Burr 

 

New 

 

9 

 

Topp–Leone 
( )( ) ( )( )

2

2 2b b b bx x x x +− −   

EZ-Topp-Leone 

 

New 
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( )

( )
2

1 cos
2

1

1
,             , 0,   ,

a
F x

x a
e

xG
e







  
−  

   −

−
 =                   (22) 

with density function 

( ) ( ) ( ) ( ) ( )
( )

2

1 cos
1 2

,        sin 1 cos
2

.
21

a
F x

a a aa
g f x F x F xx x F e

e
x






  
  
−  −   

    
= −    

−    



       (23) 

3.6. Another extended Cosine-X family of distributions 

Taking ( ) ( ) ( )
2

1 cos 1 cos
2 2

R F xx F x
 

 
      

= − + −      
      

in (14), we define the cdf of the 

another extended cosine-X (for short ‘AEC-X’) family as 

( )

( ) ( )
2

1 cos 1 cos
2 2

,             , 0, .
1

1
  

F x F x

G
e

x x
e

 
 

 
 

      
− + −      

      

+

−


−
=                 (24) 

The pdf of the AEC-X family can easily be obtained by simply differentiating (24). 

 

3.7. Another extended Cosine exponentiated-X family 

Taking ( ) ( ) ( )
2

1 cos 1 cos
2 2

a a
R xx F F x

 
 
      

= − + −      
      

in (14), we introduce another 

extended cosine exponentiated-X (for short ‘AECE-X’) via the cdf 

( )

( ) ( )
2

1 cos 1 cos
2 2

1

1
,             , 0,   .

a a
F x F x

x a x
e

G
e

 
 

 
 

      
− + −      

      

+
 

−

−
=                 (25) 

By differentiating (25), we get the density function of the AECE-X family. 

 

3.8. The extended transmuted-G family 

Let ( )T x be the cdf of the transmuted distribution family. Then we define the extended 

transmuted-G family (for short ‘ET-G’) by taking ( ) ( ) ( )
2

x x xR T T = +  in (14), as follows 

( )
( ) ( )

2

,             0,   ,
1

1

x T xT
e

G
e

x x
 

 
  

+

+

−
=

−
               (26) 

3.9. The extended Kumaraswamy-G family 

Let ( )K x be the cdf of the Kumaraswamy distributions. Then, we define the extended 

Kumaraswamy family (for short ‘EKu-G’) by taking ( ) ( ) ( )
2

x x xR K K = +  in (14), as 

follows 

( )
( ) ( )

2

,             0,   .
1

1

x K xK
e

G
e

x x
 

 
  

+

+

−
=

−
                      (27) 

 

3.10. The alpha power transformed Cosine-X family 

We define an extended form of the alpha power transformed family by 

( )
( )

,             0,   ,
1

1

R x

G x x



  

−

−
=            (28) 
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where, ( )R x may be any function of cdf satisfying the conditions stated in section 2. Here, 

we define a new family, called the alpha power transformed cosine-X (for short ‘APTC-

X’) family by taking ( ) ( )1 cos
2

R F xx
 

= −  
 

in (28). 

( )

( )1 cos
2

,         
1

    0,  .
1

 

F x

xG x









 
−  

 

 
−

−
=            (29) 

The pdf of the APTC-X can easily be obtained by simply differentiating (29). 

3.11. The alpha power transformed Cosine exponentiated-X family 

A random variable X is said to have the alpha power transformed cosine exponentiated-X 

(for short ‘APTCE-X’) family, if its cdf is given by 

( )

( )1 cos
2

,           
1

  , ,   ,
1

0

a
F x

xG a x









 
−  

 

 
−

−
=           (30) 

with density function 

( )
( )

( ) ( ) ( )
( )1 cos

1 2sin
2 1 2

,          .

a
F x

a a
x x

a
g f x F x F x


 




 
−  −   

 
−  

=           (31) 

 

3.12. The extended alpha power transformed-X family 

Taking ( ) ( ) ( )
2

1R F x F xx  = + in (28), we introduce the extended alpha power transformed-

X (for short ‘EAPT-X’) via the cdf 

( )
( ) ( )

2
1

1,             , 0,  
1

 
1

.

F x F x

G x x
 

 


 


+

  
−

= 
−

                            (33) 

By differentiating (33), we get the density function of the EAPT-X family. 

 

4. Characterization Results 

In designing a stochastic model for a particular modeling problem, an investigator will be 

vitally interested to know if their model fits the requirements of a specific underlying 

probability distribution. To this end, the investigator will rely on the characterizations of 

the selected distribution. Thus, the problem of characterizing a distribution is an important 

problem in various fields and has recently attracted the attention of many researchers. 

Consequently, various characterization results have been reported in the literature. These 

characterizations have been established in different directions. This section deals with 

various characterizations of 12 proposed distributions listed in Section 3. These 

characterizations are based on a simple relationship between two truncated moments. It 

should be mentioned that one important advantage of our characterization is that the cdf 

need not have a closed, and moreover, it depends on the solution of a  first order differential 

equation, which provides a bridge between probability and differential equation. In the 

subsection 4.1 we provide the characterizations of the Extended Zubair-G (EZ-G) family 

of distributions. Similar characterizations can be stated for the other 11 distributions. 

4.1. Characterizations based on two truncated moments 
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This subsection deals with the characterizations of the EZ-G distribution based on the ratio 

of two truncated moments. Our first characterization employs a theorem of Glänzel (1987); 

see Theorem 1 of Appendix A. 

Proposition 4.1. Let :X → be a continuous random variable and let ( )1 1q x   and 

( ) ( ) ( )
2

2

F x xF
q x e

 +
= for .x Then, the random variable X has pdf (12) if and only if the 

function  defined in Theorem 1 is of the form 

( ) ( ) ( )( )
21

,                .
2

xF xF
x e e x

  
++= +   

Proof. Suppose the random variable X has pdf (12), then 

( )( ) ( )( ) ( ) ( )( )
2

1

1
1 | ,          ,

1

xF F x
F x E q X X x e e x

e

  

 

++

+
−  = − 

−
 

and 

( )( ) ( )( )
( )

( ) ( ) ( )( )2

2

221
1 | ,       .

2 1

F xF x

F x E q X X x e e x
e

  

 

++

+

 
−  = −  

−  
 

Further, 

( ) ( ) ( ) ( ) ( )( )
2

1 2

1
0,        for   .

2

F Fx x
x q x q x e e x

  
++− = −    

Conversely, if   is of the above form, then 

( )
( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

2

2

/

1/

1 2

,      ,
2

F x x

x x

F

F F

x xx q x
s

f F e

e
x x

x q x q x e

 

  

 



+

++

+

−
= = 

−
 

and hence 

( ) ( ) ( )( )
2

log ,      .
x F xF

s x xe e
   ++= − −  

Now, in view of Theorem 1, X has density (12). 

Corollary 4.1. Let X:→  be a continuous random variable and let ( )1q x be as in 

Proposition 4.1. The random variable X has pdf (12) if and only if there exist functions 
2q

and defined in Theorem 1 satisfying the following differential equation 

( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

2

2

/

1

1 2

,              
2

    .

xF F

F

x

x xF

x xx q x
x

x q x q x

f F e

e e

 

  






+

++

+
= 

− −
 

Corollary 4.2. The general solution of the differential equation in Corollary 4.1 is 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( )( )
( )( ) ( )

2

2 1

1 2 ,
1 ;

2
F Fx

F

x

x F x
x x

x q x q x dx D
F x

f F e
e e

 

 




 




−
+

++

+

 
 = − +
 − 

+
−   

where D is a constant. Note that a set of functions satisfying the above differential equation 

is given in Proposition 4.1 with D=1/2. However, it should also be noted that there are 

other triplets ( ) ( ) ( )( )1 2, ,q x q x x  satisfying the conditions of Theorem 1. 

 

5. Concluding Remarks  

The need of compounding and generalizing distributions were first felt in the financial and 

actuarial science and later in many other fields which researchers adopted this approach 
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for lifetime and reliability modeling. In this way, the possible available compound and 

generalized G-classes are surveyed and using these basic principles nearly 12 new classes 

are proposed. The goal of providing a variety of new class classes is to test the flexibility 

of the proposed models to cope with the data available in complex situations. The 

parameters inducted in this way might be helpful in describing the phenomenon generated 

from real-lifetime data sets. We expect that these distributions will be an addition to the art 

of constructing useful probability models. One can imagine its motivation and usefulness 

in the fields which are not touched so far. Lastly, we offer more choices to the learners and 

practitioners of modeling to compare different models and to illustrate usefulness of old 

and new classes of distributions. 
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Appendix A.  

Theorem 1. Let ( , Ƒ, P) be a given probability space and let H = [d; e] be an interval for 

some d<e ( ;  d e= − = might as well be allowed). Let X: H→ be a continuous random 

variable with the distribution function F and let ( )1q x  and ( )2q x  be two real functions 

defined on H such that 

( )( ) ( )( ) ( )2 1| | ,                    ,E q X X x E q X X x x x H =    

is defined with some real function . Assume that ( ) ( )1 2

1 2, ,  q q C H C H  and F is twice 

continuously differentiable and strictly monotone function on the set H. Finally, assume 

that the equation 1 2q q = has no real solution in the interior of H. Then F is uniquely 

determined by the functions 1 2,  q q and particularly 

( )
( )

( ) ( ) ( )
( )( )

/

1 2

 exp ,

x

a

u
F x C s u du

u q u q u




= −

−  
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where the function ( )s u  is a solution of the differential equation
/

/ 1

1 2

q
s

q q




=

−
and C is the 

normalization constant, such that 1.
H

dF =         

    Note that the result, however, holds also when the interval H 

is not closed, since the condition is on the interior of H.     

        We like to mention that this 

kind of characterization based on the ratio of truncated moments is stable in the sense of 

weak convergence (see, Glänzel (1990)), in particular, let us assume that there is a sequence 

 nX of random variables with distribution functions  nF  such that the functions
1nq , 

2nq

and 
n ( )n  satisfy the conditions of Theorem 1 and let

1 1nq q→ , 
2 2nq q→ for some 

continuously differentiable real functions
1q and 

2q . Let, finally, X be a random variable 

with distribution ( )F x . Under the condition that 
1nq and 

2nq are uniformly integrable and 

the family nF  is relatively compact, the sequence Xn converges to X in distribution if and 

only if 
n converges to , where 

( )
( )( )
( )( )

2

1

|
.

|

E q X X x
x

E q X X x



=


 

This stability theorem makes sure that the convergence of distribution functions is reflected 

by corresponding convergence of the functions 
1 2,  q q and respectively. It guarantees, for 

instance, the 'convergence' of characterization of the Wald distribution to that of the Levy-

Smirnov distribution if →  as was pointed out in Glänzel and Hamedani (2001). 

         A further consequence 

of the stability property of Theorem 1 is the application of this theorem to special tasks in 

statistical practice such as the estimation of the parameters of discrete distributions. For 

such purpose, the functions 
1 2,  q q and, specially,  should be as simple as possible. Since 

the function triplet is not uniquely determined it is often possible to choose  as a linear 

function. Therefore, it is worth analyzing some special cases which helps to find new 

characterizations reflecting the relationship between individual continuous univariate 

distributions and appropriate in other areas of statistics. 

 


