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Abstract 
In this paper, we investigate a new model based on Burr X and Fréchet distributions for extreme values and 

derive some of its properties. Maximum likelihood estimation along with asymptotic confidence intervals is 

considered for estimating the parameters of the distribution. We demonstrate empirically the flexibility of 

the distribution in modeling various types of real data. Furthermore, we also provide Bayes estimators and 

highest posterior density (HPD) intervals of the parameters of the distribution using Markov Chain Monte 

Carlo (MCMC) methods. 
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1. Introduction 

The extreme value theory is a very important theory in statistics dedicated to stochastically 

series of independent and identical distributed random variables. Quite simply, one can say 

it was devoted to study the behavior of extreme values, despite these values have a very 

low opportunity to show up, they can end up having a very high impact to the observed 

system. Finance and insurance are the best fields of research to watch the significance of 

extreme events. The extreme value theory can be considered as a creating field of research. 

It began the last century as an equivalent theory to the so-called central limit theory, which 

is devoted to study the asymptotic distribution of the average of a sequence of random 

variables. The central limit theorem states that the sum and the mean of the random 

variables from an arbitrary distribution are normally distributed under the condition that 

the sample size is sufficiently large. In any case, in some practical studies we are looking 

for the limiting distribution of minimum or maximum values rather than the average. 

Assume that  𝑌1 ,  𝑌2 ,  . ..  ,  𝑌𝑛 is a sequence of  𝑖𝑖𝑑  (independent and identically distributed) 

random variables with common cdf (cumulative distribution function)  𝐹(𝑦)  . One of the 

most interesting statistics is the sample maximum  𝑀𝑛 = 𝑚𝑎𝑥{𝑌1, 𝑌2, . . . , 𝑌𝑛}.  One is keen 

on the behavior of  𝑀𝑛  as the sample size  𝑚  increases to infinity. 

 

𝑝𝑟{𝑦 ≥ 𝑀𝑛} = 𝑝𝑟{𝑌1 ≤ 𝑦, 𝑌2 ≤ 𝑦, … , 𝑌𝑛 ≤ 𝑦, } 
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= 𝑝𝑟{𝑌1 ≤ 𝑦} … 𝑝𝑟{𝑌𝑛 ≤ 𝑦} = 𝐹(𝑦)𝑚. 
Assume there are sequences of constants  {𝑎𝑚 > 0}  and  {𝑏𝑚}  such that  

𝑝𝑟 {𝑦 ≥
(𝑀𝑚 − 𝑏𝑚)

𝑎𝑚
} → 𝐺(𝑦) as 𝑚 → ∞. 

Then if  𝐺(𝑦)  is a non-degenerate distribution function, then it will belong to one of the 

three following fundamental types of classic extreme value family: Gumbel distribution 

which is Type I; Type II (Fréchet distribution); Type III (Weibull distribution). The 

extreme value theory concentrates on the behavior of the block maxima or minima.  

 

The extreme value theory was presented firstly by Fréchet (1927) and Fisher and Tippett 

(1928), then took after by Von Mises (1936) and finished by Gnedenko (1943), Von Mises 

(1964), Kotz and Johnson (1992), among others. The so called Fréchet (‘Fr’for short) 

distribution is one of the important distributions in extreme value theory and it has 

applications ranging from accelerated life testing through earthquakes, rainfall, floods, 

horse racing, queues in supermarkets, wind speeds and sea waves. For more details about 

the Fr distribution and its applications, see Kotz and Nadarajah (2000). Moreover, 

applications of this distribution in various fields are given in Harlow (2002).  

 

As of late, some new extensions of the Fréchet distribution were considered. The 

exponentiated Fréchet (EFr) by Nadarajah and Kotz (2003), beta Fréchet (BFr) by 

Nadarajah and Gupta (2004), Nadarajah and Kotz (2008) and Zaharim et al. (2009), beta 

Fréchet by Barreto-Souza et al. (2011) and Mubarak (2013), transmuted Fréchet (TFr) by 

Mahmoud and Mandouh (2013), Marshall-Olkin (MOFr)Fréchet by Krishna et.al. (2013), 

gamma extended Fréchet (GEFr) by da Silva et al. (2013), transmuted exponentiated 

Fréchet (TEFr) by Elbatal et al. (2014), transmuted Marshall-Olkin Fréchet (TMOFr) by 

Afify et al. (2015), transmuted exponentiated generalized Fréchet (TEGFr) by Yousof et 

al. (2015), Kumaraswamy Marshall-Olkin Fréchet (KMOFr) by Afify et al. (2016b), 

Weibull Fréchet (WFr) by Afify et al. (2016b), Kumaraswamy transmuted Marshall-Olkin 

Fréchet (KTMOFr) by Yousof et al. (2016),  Odd Lindley Fréchet (OLFr) by Korkmaz et 

al. (2017), odd log-logistic Fréchet (OLLFr) by Yousof et al. (2018a), Transmuted Topp 

Leone Fréchet (TTLFr) by Yousof et al. (2018b), among others. Many other extensions 

can be found in Brito et al. (2017), Hamedani et al. (2017), Yousof et al. (2018c), Cordeiro 

et al. (2018), Chakraborty et al. (2018), Hamedani et al. (2017), Hamedani et al. (2018), 

Korkmaz et al. (2018), Alizadeh et al. (2018), Alizadeh et al. (2019), Korkmaz et al. (2019) 

Elbiely and Yousof (2019), Nascimento et al. (2019), Ibrahim (2019) and Hamedani et al. 

(2019). 

The probability density function (pdf) and cumulative distribution function (cdf) of the Fr 

distribution are given by (for  𝑥 ≥ 0 ) 

𝑔(𝑥 ; 𝑎 , 𝑏) = 𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]                                   (1) 

and  

𝐺(𝑥, 𝑎, 𝑏) = 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

],                                                   (2) 

respectively, where  𝑎 > 0  is a scale parameter and  𝑏 > 0  is a shape parameter.  Yousof 

et al. (2017) defined the cdf of the Burr X-G (BrX-G) family of distribution (for  𝑥 > 0 ) 

by  
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𝐹(𝑥 ; 𝜃 , 𝜉) = (1 − 𝑒𝑥𝑝 {− [
𝐺(𝑥 ; 𝜉)

𝐺(𝑥 ; 𝜉)
]

2

})
𝜃

.                                       (3) 

The BrX-G density function becomes  

𝑓(𝑥 ; 𝜃 , 𝜉) =
2𝜃𝑔(𝑥 ; 𝜉)𝐺(𝑥 ; 𝜉)

𝐺(𝑥 ; 𝜉)3 𝑒𝑥𝑝 {− [
𝐺(𝑥 ; 𝜉)

𝐺(𝑥 ; 𝜉)
]

2

} (1 − 𝑒𝑥𝑝 {− [
𝐺(𝑥 ; 𝜉)

𝐺(𝑥 ; 𝜉)
]

2

})
𝜃−1

,      (4) 

where  𝜃 > 0  is the shape parameter and  𝜉 =   𝜉𝑘 =  (  𝜉1, 𝜉2, . .. ) is a parameters vector. 

A random variable  𝑋  with pdf (4) is denoted by  𝑋 ∼ BX-G ( 𝜃, 𝜉 ). The cdf and the pdf 

of the Burr X Fr (BrXFr)  

𝐹(𝑥 ; 𝜃 , 𝑎, 𝑏) = (1 − 𝑒𝑥𝑝 [− {
𝑒𝑥𝑝[−(

𝑎

𝑥
)

𝑏
]

1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]
}

2

])

𝜃

                              (5) 

and  

𝑓(𝑥 ; 𝜃 , 𝑎, 𝑏) =

2𝜃𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 (−2 (
𝑎

𝑥
)

𝑏

− {
𝑒𝑥𝑝[−(

𝑎

𝑥
)

𝑏
]

1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]
}

2

)

{1 − 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]}
3  

× [1 − 𝑒𝑥𝑝 (− {
𝑒𝑥𝑝[−(

𝑎

𝑥
)

𝑏
]

1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]
}

2

)]

𝜃−1

,                         (6) 

respectively. We provide a very useful linear representation for the BrXFr density function. 

If  |𝑧| < 1  and  𝑏 > 0  is a real non-integer, the power series holds  

(1 − 𝑧)𝑏−1 = ∑
𝑖=0

∞
(−1)𝑖𝛤(𝑏)

𝑖!𝛤(𝑏−𝑖)
𝑧𝑖 .                                                      (7) 

Applying (7) to last term in (6) we get  

𝑓(𝑥) =
2𝜃𝑏𝑎𝑏𝑥

−(𝑏+1) 𝑒𝑥𝑝[−2(
𝑎
𝑥

)
𝑏

]

{1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]}

3 ∑
𝑖=0

∞

𝑒𝑥𝑝 (−(𝑖 + 1) {
𝑒𝑥𝑝[−(

𝑎

𝑥
)

𝑏
]

1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]
}

2

).             (8) 

Applying the power series to the term  𝑒𝑥𝑝 (−(𝑖 + 1) {
𝑒𝑥𝑝[−(

𝑎

𝑥
)

𝑏
]

1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]
}

2

) , Equation (8) 

becomes  

𝑓(𝑥) = 2𝜃𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [−2 (
𝑎

𝑥
)

𝑏

] ∑
𝑖,𝑗=0

∞
(−1)𝑖+𝑗(𝑖+1)𝑗𝛤(𝜃)

𝑖!𝑗!𝛤(𝜃−𝑖)

𝑒𝑥𝑝[−(2𝑗+1)(
𝑎

𝑥
)

𝑏
]

{1−𝑒𝑥𝑝[−(
𝑎

𝑥
)

𝑏
]}

2𝑗+3.        (9) 

Consider the series expansion  

(1 − 𝑧)−𝑏 = ∑
𝑘=0

∞
𝛤(𝑏+𝑘)

𝑘!𝛤(𝑏)
𝑧𝑘 , |𝑧| < 1,  𝑏 > 0.                                          (10) 

Applying the expansion in (10) to (9) for the term {1 − 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]}
2𝑗+3

 , equation (9) 

becomes  

𝑓(𝑥) = ∑
𝑗,𝑘=0

∞

𝛺𝑗,𝑘ℎ2𝑗+𝑘+2(𝑥),                                                           (11) 
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where 

𝛺𝑗,𝑘 =  
2𝜃(−1)𝑗𝛤(𝜃)𝛤(2𝑗 + 𝑘 + 3)

𝑗! 𝑘! 𝛤(2𝑗 + 3)(2𝑗 + 𝑘 + 2)
∑

𝑖=0

∞
(−1)𝑖(𝑖 + 1)𝑗

𝑖! 𝛤(𝜃 − 𝑖)
, 

and  ℎ2𝑗+𝑘+2(𝑥)  is the Fr density with scale parameter  𝑎(2𝑗 + 𝑘 + 2)
1

𝑏  and shape 

parameter  𝑏 . Thus, the BrXFr density can be expressed as a double linear mixture of Fr 

densities. So, several of its structural properties can be obtained from Equation (11). By 

integrating Equation (11), the cdf of X can be given in the mixture form  

𝐹(𝑥) = ∑
𝑗,𝑘=0

∞

𝛺𝑗,𝑘 𝐻2𝑗+𝑘+2(𝑥),                                                    (12) 

where  𝐻2𝑗+𝑘+2(𝑥)  is the Fr cdf with scale parameter  𝑎(2𝑗 + 𝑘 + 2)
1

𝑏  and shape 

parameter  𝑏 . Figure 1 display some plots of the BrXFr density for selected values of  

𝜃, 𝑎, 𝑏 . The density plots indicate that the BrXFr distribution can be skewed to the right 

with small and large values for the skewness and kurtosis measures. The plots of the BrXFr 

hrf for some parameter values given in Figure 2 reveal that this function can be unimodal, 

decreasing or increasing, depending on the parameter values. 

 

  
 

The paper is unfolded as follows. In Section 2, we obtain some mathematical properties of 

the proposed model. In Section 3, the model parameters are estimated by using maximum 

likelihood method and a simulation study is performed, two applications are given to 

illustrate the flexibility of the proposed model. In Section 4, Bayesian estimation is 

performed by obtaining the posterior marginal distributions, we use the simulation method 

of MCMC by the Metropolis-Hastings algorithm in each step of Gibbs algorithm, 

cumulative mean, autocorrelation plots based on pig's data and density plots of MCMC 

chains of the parameters are presented. Finally, Section 7 offers some concluding remarks. 

 

2. Properties 

2.1 Probability weighted moments 

The probability weighted moment (PWMs) are expectations of certain functions of a 

random variable and they can be defined for any random variable whose ordinary moments 

exist. The PWM method can generally be used for estimating parameters of a distribution 
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whose inverse form cannot be expressed explicitly. The  (𝑠, 𝑟) th PWM of  𝑋  following 

the BrXFr distribution, say  𝜌𝑠,𝑟  ,is formally defined by 

 

𝜌𝑠,𝑟 = 𝐸{𝑋𝑠𝐹(𝑋)𝑟} = ∫
∞

−∞

𝑥𝑠𝐹(𝑥)𝑟𝑓(𝑥)𝑑𝑥. 

Using (5), (6) and the last equation we can write  

𝑓(𝑥)𝐹(𝑥)𝑟 = ∑

∞

𝑗,𝑘=0

𝑡𝑗,𝑘 ℎ2𝑗+𝑘+2(𝑥), 

 where  

𝑡𝑗,𝑘 =
2𝜃(−1)𝑗𝛤(2𝑗 + 𝑘 + 3)

𝑗! 𝑘! 𝛤(2𝑗 + 3)(2𝑗 + 𝑘 + 2)
∑

∞

𝑖=0

(−1)𝑖(𝑖 + 1)𝑗 (𝜃(𝑟 + 1) − 1
𝑖

). 

Then, the  (𝑠, 𝑟) th PWM of  𝑋  can be expressed as  

𝜌𝑠,𝑟 = ∑

∞

𝑗,𝑘=0

𝑡𝑗,𝑘

𝑎−𝑠
(2𝑗 + 𝑘 + 2)

𝑠

𝑏𝛤 (1 −
𝑠

𝑏
) , ∀ 𝑠 < 𝑏. 

 

2.2 Residual and reversed residual life 

The  𝑛 th moment of the residual life, say  𝑟𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛 | 𝑋 > 𝑡] ,  𝑛 = 1,2 ,, 

uniquely determines  𝐹(𝑥) . The  𝑛 th moment of the residual life of  𝑋  is given by  𝑟𝑛(𝑡) =
1

1−𝐹(𝑡)
∫

∞

𝑡
(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥).  Therefore,  

𝑟𝑛(𝑡) =
1

1 − 𝐹(𝑡)
∑

𝑗,𝑘=0

∞
𝛺𝑗,𝑘

∗

𝑎−𝑛
(2𝑗 + 𝑘 + 2)

𝑛

𝑏𝛤 (1 −
𝑛

𝑏
, (2𝑗 + 𝑘 + 2) (

𝑎

𝑡
)

𝑏

) , ∀ 𝑛 < 𝑏, 

 where  𝛺𝑗,𝑘
∗ = 𝛺𝑗,𝑘 ∑

𝑟=0

𝑛

(1 − 𝑡)𝑛.  Another interesting function is the mean residual life 

(MRL) function or the life expectation at age  𝑡  defined by  𝑟1(𝑡) = 𝐸[(𝑋 − 𝑡)| 𝑋 > 𝑡] , 
which represents the expected additional life length for a unit which is alive at age  𝑡 . The 

MRL of  𝑋  can be obtained by setting  𝑛 = 1  in the last equation. The  𝑛 th moment of 

the reversed residual life, say  𝑅𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)𝑛 | 𝑋 ≤ 𝑡]  for  𝑡 > 0  and  𝑛 = 1,2 , 

uniquely determines  𝐹(𝑥) . We obtain  𝑅𝑛(𝑡) =
1

𝐹(𝑡)
∫

𝑡

0
(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥).  Then, the  𝑛 th 

moment of the reversed residual life of  𝑋  becomes  

𝑅𝑛(𝑡) =
1

𝐹(𝑡)
∑

𝑗,𝑘=0

∞
𝛺𝑗,𝑘

∗∗

𝑎−𝑛
(2𝑗 + 𝑘 + 2)

𝑛

𝑏𝛤 (1 −
𝑛

𝑏
, (2𝑗 + 𝑘 + 2) (

𝑎

𝑡
)

𝑏

) , ∀ 𝑛 < 𝑏, 

where  𝛺𝑗,𝑘
∗∗ = 𝛺𝑗,𝑘 ∑

𝑟=0

𝑛

(−1)𝑟 (
𝑛
𝑟

) 𝑡𝑛−𝑟 .  The so called mean inactivity time (MIT) or mean 

waiting time also called the mean reversed residual life function, is given by  𝑅1(𝑡) =
𝐸[(𝑡 − 𝑋)| 𝑋 ≤ 𝑡] , and it represents the waiting time elapsed since the failure of an item 

on condition that this failure had occurred in  (0, 𝑡) .The MIT of the BrXFr generator of 

distributions can be obtained easily by setting  𝑛 = 1  in the above equation. 
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2.3 Stress-strength reliability model 

Stress-strength model is the most widely approach used for reliability estimation. This 

model is used in many applications of physics and engineering such as strength failure and 

system collapse. In stress-strength modeling,  𝑅 = 𝑃𝑟( 𝑋2 < 𝑋1)  is a measure of reliability 

of the system when it is subjected to random stress  𝑋2  and has strength  𝑋1 . The system 

fails if and only if the applied stress is greater than its strength and the component will 

function satisfactorily whenever  𝑋1 > 𝑋2 .  𝑅  can be considered as a measure of system 

performance and naturally arise in electrical and electronic systems. Other interpretation 

can be given as the reliability  𝑅  of a system is the probability that the system is strong 

enough to overcome the stress imposed on it. Let  𝑋1  and  𝑋2  be two independent random 

variables with BrXFr  (𝜃1, 𝑎, 𝑏)  and BrXFr (𝜃2, 𝑎, 𝑏)  distributions, respectively. Then, 

the reliability is defined by  𝑅 = ∫
∞

0
𝑓1(𝑥 ; 𝜃1 , 𝑎, 𝑏)𝐹2(𝑥 ; 𝜃2 , 𝑎, 𝑏)𝑑𝑥. We can write  

𝑅 = ∑

𝑗,𝑘,𝑤,𝑚=0

∞

𝑠𝑗,𝑘,𝑤,𝑚 ∫
∞

0

ℎ2(𝑗+𝑤)+𝑘+𝑚+4(𝑥)𝑑𝑥, 

where 

𝑠𝑗,𝑘,𝑤,𝑚 = 4𝜃1𝜃2 ∑

𝑗,𝑘,𝑤,𝑚=0

∞
(−1)𝑗+𝑤𝛤(2𝑗 + 𝑘 + 3)𝛤(2𝑤 + 𝑚 + 3)

𝑗! 𝑘! 𝑤! 𝑚! 𝛤(𝜃2 − ℎ)𝛤(2𝑗 + 3)𝛤(2𝑤 + 3)
 

∑

𝑖,ℎ=0

∞ (−1)𝑖+ℎ(𝑖 + 1)𝑗(ℎ + 1)𝑤 (
𝜃1 − 1

𝑖
) (

𝜃2 − 1
ℎ

)

(2𝑤 + 𝑚 + 2)(2𝑗 + 𝑘 + 2𝑤 + 𝑚 + 4)
. 

Thus, the reliability can be expressed as  

𝑅 = ∑

𝑗,𝑘,𝑤,𝑚=0

∞

𝑠𝑗,𝑘,𝑤,𝑚. 

 

 

2.4 Order statistics and the QS order 

Let  𝑋1, 𝑋2, … , 𝑋𝑛,  be a random sample from the BrXFr model and let  

𝑋1   :   𝑛, 𝑋2   :   𝑛, … , 𝑋𝑛   :   𝑛,  be the corresponding order statistics. The pdf of  𝑖𝑡ℎ  order 

statistic, say  𝑋𝑖   :   𝑛 , can be written as  

𝑓𝑖   :   𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖,𝑛−𝑖+1)
∑𝑛−𝑖

𝑗=0 (−1)𝑗 (
𝑛 − 𝑖

𝑗
) 𝐹𝑗+𝑖−1(𝑥),                             (13) 

where  𝐵(⋅,⋅)  is the beta function. Using (5), (6) and (13) we can write 

 

𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1 = ∑

∞

𝑤,𝑘=0

𝑑𝑤,𝑘 ℎ2𝑤+𝑘+2(𝑥), 

where 

𝑑𝑤,𝑘 =
2𝜃(−1)𝑤𝛤(2𝑤 + 𝑘 + 3)

𝑤! 𝑘! 𝛤(2𝑤 + 3)(2𝑤 + 𝑘 + 2)
∑

∞

𝑚=0

(−1)𝑚(𝑚 + 1)𝑤 (𝜃(𝑗 + 𝑖) − 1
𝑚

). 

The pdf of  𝑋𝑖   :   𝑛  can be expressed as  
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𝑓𝑖   :   𝑛(𝑥) = ∑

∞

𝑤,𝑘=0

∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖

𝑗
) 𝑑𝑤,𝑘

𝐵(𝑖, 𝑛 − 𝑖 + 1)
ℎ2𝑤+𝑘+2(𝑥). 

Then, the density function of the BrXFr order statistics is a mixture of exp-G densities. 

Based on the last equation, we note that the properties of  𝑋𝑖   :   𝑛  follow from those 

properties of  𝑌2𝑤+𝑘+2 . For example, the moments of  𝑋𝑖   :   𝑛  can be expressed as  

𝐸(𝑋𝑖   :   𝑛
𝑞 ) = ∑

∞

𝑤,𝑘=0

∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖

𝑗
) 𝑑𝑤,𝑘

𝐵(𝑖, 𝑛 − 𝑖 + 1)𝑎−𝑞
(2𝑤 + 𝑘 + 2)

𝑞

𝑏𝛤 (1 −
𝑞

𝑏
) , ∀ 𝑞 < 𝑏, 

Let  𝑋1  and  𝑋2  be two random variables follow BrXFr distribution with quantile spreads  

𝑄𝑆𝑋1
  and  𝑄𝑆𝑋2

 , respectively. Then  𝑋1  is called smaller than  𝑋2  in quantile spread 

order, denoted as  𝑋1   ≤𝑄𝑆 𝑋2  , if  𝑄𝑆𝑋1
(𝑝) ≤ 𝑄𝑆𝑋2

(𝑝)  for all  𝑝 ∈ (0.5,1) . The following 

properties of the quantile spread order can be determined. The order  ≤𝑄𝑆  is location-free, 

i.e.,  𝑋1 ≤𝑄𝑆 𝑋2  if  (𝑋1 + 𝑐) ≤𝑄𝑆 𝑋2  for any real  𝑐.  The order  ≤𝑄𝑆  is dilative, i.e,  

𝑋1 ≤𝑄𝑆 𝑎𝑋1  whenever  𝑎 ≥ 1  and  𝑋2 ≤𝑄𝑆 𝑎𝑋2  whenever  𝑏 ≥ 1.   𝑋1 ≤𝑄𝑆 𝑋2  if, and 

only if   −𝑋1 ≤𝑄𝑆− 𝑋2.  Assume  𝐹𝑋1
  and  𝐹𝑋2

  are symmetric, then  𝑋1 ≤𝑄𝑆 𝑋2  if, and 

only if  𝐹𝑋1

−1(𝑝) ≤ 𝐹𝑋2

−1(𝑝)  for  𝑝 ∈ (0.5,1) . The order  ≤𝑄𝑆 implies ordering of the mean 

absolute deviation around the median, MAD,  𝑀𝐴𝐷(𝑋1) = 𝐸[|𝑋 − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋1)|]  and  

𝑀𝐴𝐷(𝑋2) = 𝐸[|𝑋 − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋2)|]  i.e.,  𝑋1 ≤𝑄𝑆 𝑋2  implies  𝑀𝐴𝐷(𝑋1) ≤𝑄𝑆 𝑀𝐴𝐷(𝑋2).  

 

2.5 General properties 

The  𝑟 th ordinary moment of  𝑋  is given by  𝜇𝑟
′ = 𝐸(𝑋𝑟) =   ∑

𝑗,𝑘=0

∞

𝛺𝑗,𝑘 ∫
∞

−∞
𝑥𝑟   

ℎ2𝑗+𝑘+2(𝑥)𝑑𝑥.  Then we obtain  

𝜇𝑟
′ = ∑

𝑗,𝑘=0

∞
𝛺𝑗,𝑘

𝑎−𝑟
(2𝑗 + 𝑘 + 2)

𝑟

𝑏𝛤 (1 −
𝑟

𝑏
) , ∀ 𝑟 < 𝑏,                         (14) 

setting  𝑟 = 1  in (14), we have the mean of  𝑋 . The last integration can be computed 

numerically for most parent distributions. The skewness and kurtosis measures can be 

calculated from the ordinary moments using well-known relationships. The  𝑟 th central 

moment of  𝑋 , say  𝑀𝑟 , is  𝑀𝑟 = 𝐸(𝑋 − 𝜇)𝑟 = ∑
𝑟

ℎ=0
(−1)ℎ (

𝑟
ℎ

) (𝜇1
′ )𝑟𝜇𝑟−ℎ

′ .  The cumulants 

( 𝜅𝑛 ) of  𝑋  follow recursively from  𝜅𝑛 = 𝜇𝑛
′ − ∑𝑛−1

𝑟=0 (
𝑛 − 1
𝑟 − 1

) 𝜅𝑟𝜇𝑛−𝑟
′   , where  𝜅1 =

𝜇1
′  ,  𝜅2 = 𝜇2

′ − 𝜇1
′2, 𝜅3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′3 , and so on. The skewness and kurtosis 

measures also can be calculated from the ordinary moments using well-known 

relationships. Here, we provide two formulae for the moment generating function (mgf)  

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋)  of  𝑋 . Clearly, the first one can be derived from using (14) as  

𝑀𝑋(𝑡) = ∑

𝑗,𝑘=0

∞

𝛺𝑗,𝑘𝑀2𝑗+𝑘+2(𝑡) = ∑

∞

𝑗,𝑘,𝑟=0

𝛺𝑗,𝑘

𝑎−𝑟

𝑡𝑟

𝑟!
(2𝑗 + 𝑘 + 2)

𝑟

𝑏𝛤 (1 −
𝑟

𝑏
) , ∀ 𝑟 < 𝑏, 

As for the second formula for  𝑀𝑋(𝑡) , consider the Wright generalized hypergeometric 

function defined by  

𝑝𝛹𝑞 [
(𝛼1, 𝐴1), … , (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1), … , (𝛽𝑞 , 𝐵𝑞)
; 𝑥] = ∑

∞

𝑛=0

∏𝑝
𝑗=1 𝛤(𝛼𝑗 + 𝐴𝑗𝑛)

∏𝑞
𝑗=1 𝛤(𝛽𝑗 + 𝐵𝑗𝑛)

𝑥𝑛

𝑛!
. 
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Then, we have  

𝑀(𝑡 ; 𝑎 , 𝑏) =  1𝛹0 [
(1, −𝑏−1)

−
; 𝑎 𝑡].                                     (15) 

Combining expressions (11) and (15), we obtain the mgf of  𝑋 , say  𝑀(𝑡) , as  

𝑀(𝑡) = ∑

𝑗,𝑘=0

∞

𝛺𝑗,𝑘1
𝛹0 [

(1, −𝑏−1)
−

; 𝑎 (2𝑗 + 𝑘 + 2)
1

𝑏𝑡]. 

The main applications of the first incomplete moment refer to the mean deviations and the 

Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. The  𝑠 th incomplete moment, say  𝐼𝑠(𝑡) , of  𝑋  can 

be expressed from (11), for  𝑟 < 𝑏 , as  

𝐼𝑠(𝑡) = ∑

𝑗,𝑘=0

∞

𝛺𝑗,𝑘 ∫
𝑡

−∞

𝑥𝑠ℎ2𝑗+𝑘+2(𝑥)𝑑𝑥

= ∑

𝑗,𝑘=0

∞
𝛺𝑗,𝑘 

𝑎−𝑠
(2𝑗 + 𝑘 + 2)

𝑠

𝑏𝛤 (1 −
𝑠

𝑏
, (2𝑗 + 𝑘 + 2) (

𝑎

𝑡
)

𝑏

) , ∀ 𝑠 < 𝑏. 

The mean deviations about the mean  [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)]  and about the median  

[𝛿2 = 𝐸(|𝑋 − 𝑀|)]  of  𝑋  are given by  𝛿1 = 2𝜇1
′ 𝐹(𝜇1

′ ) − 2𝐼1(𝜇1
′ )  and  𝛿2 = 𝜇1

′ − 2𝐼1(𝑀) 

, respectively, where  𝜇1
′ = 𝐸(𝑋) ,  𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄(0.5)  is the median,  𝐹(𝜇1

′ )  is 

easily calculated from (5) and  𝐼1(𝑡)  is the first incomplete moment given by the last 

Equation with  𝑠 = 1 . The general formula for  𝐼1(𝑡)  can be obtained from  𝐼𝑠(𝑡)  as  

𝐼1(𝑡) = ∑

𝑗,𝑘=0

∞
𝛺𝑗,𝑘 

𝑎−1
(2𝑗 + 𝑘 + 2)

1

𝑏𝛤 (1 −
1

𝑏
, (2𝑗 + 𝑘 + 2) (

𝑎

𝑡
)

𝑏

). 

 

2.6 Quantile measure 

The effects of the shape parameters  𝜃  and  𝑏  on the skewness and kurtosis can be 

considered based on quantile measures. The Bowley skewness is one of the earliest 

skewness measures defined by  

𝐵 =
𝑄 (

3

4
) − 2𝑄 (

1

2
) + 𝑄 (

1

4
)

𝑄 (
3

4
) − 𝑄 ( 

1

4
)

. 

 Since only the middle two quartiles are considered and the outer two quartiles are ignored, 

this adds robustness to the measure. The Moors kurtosis (Moors 1988) is defined as  

𝑀 =
𝑄 (

3

8
) − 𝑄 (

1

8
) + 𝑄 (

7

8
) − 𝑄 (

5

8
)

𝑄 (
6

8
) − 𝑄 (

2

8
)

. 

 Clearly,  𝑀 > 0  and there is good concordance with the classical kurtosis measures for 

some distributions. These measures are less sensitive to outliers and they exist even for 

distributions without moments. For the standard normal distribution, these measures are 0 

(Bowley) and 1.2331 (Moors). 

In Figure 3, we plot the measures  𝐵  and  𝑀  for some parameter values. These plots 

indicate that both measures  𝐵  and  𝑀  depend on all shape parameters. 
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3. Maximum likelihood estimation and real data modelling 

In this section, we introduce a procedure for maximum likelihood estimation of the BrXFr 

model. We also assess the performance of the maximum likelihood estimators (MLEs) with 

varying sample size by means of a simulation study. Using the MLEs, we model two real 

data sets with BrXFr distribution and other comparative distributions. 

 

3.1 Maximum likelihood estimation 

We consider the estimation of the unknown parameters of the BrXFr model from complete 

samples only by maximum likelihood. The MLEs of the parameters of the BrXFr  (𝜃, 𝑎, 𝑏)  

model is now discussed. Let  𝑥1, … , 𝑥𝑛  be a random sample of this distribution with 

parameter vector  𝛩 = (𝜃, 𝑎, 𝑏)𝑇 . The log-likelihood function for  𝛩 , say  ℓ = ℓ(𝛩) , is 

given by 

ℓ = 𝑛 𝑙𝑜𝑔(2) + 𝑛 𝑙𝑜𝑔(𝜃) + 𝑛 𝑙𝑜𝑔(𝑎) + 𝑛 𝑙𝑜𝑔(𝑏) − (𝑏 − 1) ∑

𝑛

𝑖=1

𝑙𝑜𝑔(𝑥𝑖) 

+ ∑

𝑛

𝑖=1

[−2 (
𝑎

𝑥𝑖
)

𝑏

− (
𝑧𝑖

1 − 𝑧𝑖
)

2

] − 3 ∑

𝑛

𝑖=1

𝑙𝑜𝑔(1 − 𝑧𝑖) 

+(𝜃 − 1) ∑𝑛
𝑖=1 𝑙𝑜𝑔 {1 − 𝑒𝑥𝑝 [− (

𝑧𝑖

1−𝑧𝑖
)

2

]},                                            (16) 

 where  𝑧𝑖 = 𝑒𝑥𝑝 [− (
𝑎

𝑥𝑖
)

𝑏

]  and the last equation can be maximized either by using the 

different programs like R (optim function), SAS (PROC NLMIXED) or by solving the 

nonlinear likelihood equations obtained by differentiating (16). The score vector elements 

can be easily obtained. 

 

3.2 Performance of MLEs 

In this subsection, to assess the performance of the MLEs, a simulation study is performed 

using the statistical software R. We present some simulations for different sample sizes. 

Simulating random variables from well-defined probability distributions has been 
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discussed in the computational statistics literature, e.g. the inverse transformation method, 

the rejection and acceptance sampling technique, etc. An ideal technique for simulating 

from the BrXFr distribution is the inversion method. We can simulate random variable  𝑋  

by 

• Set  𝑛  and  𝛩 = (𝜃, 𝑎, 𝑏) . 

• Simulate  𝑢 ∼ 𝑈(0,1) . 

• Using inverse cdf method, generate  𝑥  from 

𝑥 = 𝑎 (− 𝑙𝑛
√− 𝑙𝑛(1 − 𝑢1/𝜃)

1 + √− 𝑙𝑛(1 − 𝑢1/𝜃)
)

−1/𝑏

. 

• Repeat the above steps, n times and obtain  𝑥1, 𝑥2, … , 𝑥𝑛  from BrXFr (𝜃, 𝑎, 𝑏) . 

We use  𝜃 = 2, 𝑎 = 2  and  𝑏 = 0.5  for the parameter values in the simulation study. For 

selected combination of  𝜃, 𝑎  and  𝑏  we generate samples of sizes  𝑛  = 50, 100, 150, 200, 

250, 300, 350, 400, 450 and 500 from the BrXFr distribution. The number of Monte Carlo 

replications is 2000 times and the evaluation of the estimates is performed based on the 

bias and mean squared errors (MSEs) which are calculated using the R package from the 

Monte Carlo replications. The empirical results are given in Figures 4, 5 and 6. It can be 

observed that as sample size increases the biases and MSEs decreases. Therefore, the 

maximum likelihood method works very well to estimate the model parameters of the 

BrXFr distribution. 
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3.3 Real data modelling 

In this subsection, we provide two applications to real data to illustrate the importance of 

the BrXFr distribution presented in Section 1. Indeed, we prove the flexibility of the new 

distribution by means of three real data sets. We compared the fits of the BrXFr distribution 

with other models such as Fréchet (Fr), Kumaraswamy Fréchet (KFr), exponentiated 

Fréchet (EFr), beta Fréchet (BFr), transmuted Fréchet (TFr), Marshal-Olkin Fréchet 

(MOFr) and McDonald Fréchet (McFr) distributions given by: 

• KFr :  𝑓(𝑥 ; 𝛼 , 𝜃, 𝑎, 𝑏) = 𝛼𝜃𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [−𝛼 (
𝑎

𝑥
)

𝑏

] {1 − 𝑒𝑥𝑝 [−𝛼 (
𝑎

𝑥
)

𝑏

]}
𝜃−1

;  

  

• EFr :  𝑓(𝑥 ; 𝛼 , 𝑎, 𝑏) = 𝛼𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

] {1 − 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]}
𝛼−1

;   

 

• BFr :  𝑓(𝑥 ; 𝛼 , 𝜃, 𝑎, 𝑏) =
𝑏𝑎𝑏

𝐵(𝛼,𝜃)
𝑥−(𝑏+1) 𝑒𝑥𝑝 [−𝛼 (

𝑎

𝑥
)

𝑏

] {1 − 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]}
𝜃−1

;   

 

• TFr :  𝑓(𝑥 ; 𝜃 , 𝑎, 𝑏) = 𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

] {1 + 𝜃 − 2𝜃 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]} ;   

 

 

• MOFr: 𝑓(𝑥 ; 𝛼 , 𝑎, 𝑏) = 𝛼𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

] {𝛼 + (1 − 𝛼) 𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

]}
−2

;   

 

• McFr:𝑓(𝑥 ; 𝛼 , 𝜃, 𝛾, 𝑎, 𝑏) =
𝛾𝑏𝑎𝑏𝑥−(𝑏+1)

𝐵(𝛼,𝜃)
𝑒𝑥𝑝 [− (

𝑎

𝑥
)

𝑏

] (𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

])
𝛼𝛾−1
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× (1 − (𝑒𝑥𝑝 [− (
𝑎

𝑥
)

𝑏

])

𝛾

)

𝜃−1

. 

 

The parameters of the above densities are all positive real numbers except for the TFr 

distributions for which  |𝛽| ≤ 1 . 

 

The first data set (Wingo data) represents a complete sample from a clinical trial describe 

a relief time (in hours) for 50 arthritic patients given by Wingo (1983) is selected. The data 

set is: 0.70, 0.84, 0.58, 0.50, 0.55, 0.82, 0.59, 0.71, 0.72, 0.61, 0.62, 0.49, 0.54, 0.36, 0.36, 

0.71, 0.35, 0.64, 0.84, 0.55, 0.59, 0.29, 0.75, 0.46, 0.46, 0.60, 0.60, 0.36, 0.52, 0.68, 0.80, 

0.55, 0.84, 0.34, 0.34, 0.70, 0.49, 0.56, 0.71, 0.61, 0.57, 0.73, 0.75, 0.44, 0.44, 0.81, 0.80, 

0.87, 0.29, 0.50. 

 

The second data set from Bjerkedal (1960) consists of 72 survival times for guinea pigs 

injected with different doses of tubercle bacilli. The data set is: 12, 15, 22, 24, 24, 32, 32, 

33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 

65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 

121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.  

 

To evaluate performance of considered models on the three data, the MLEs of the 

parameters for the considered models are calculated and five goodness-of-fit statistics are 

used to compare the new distribution. The measures of goodness of fit including the Akaike 

information criterion (𝐴𝐼𝐶), Bayesian information criterion (𝐵𝐼𝐶), Anderson-Darling (𝐴∗), 

Cramér-von Mises (𝑊∗) and Kolmogrov-Smirnov (K-S) statistics are computed to 

compare the fitted models. The statistics  𝐴∗  and  𝑊∗  are described in details in Chen, G. 

and Balakrishnan (1995). 

 

 In general, the smaller the values of these statistics, the better the fit to the data. The 

required computations are carried out in the R-language. 

 

The numerical values of the model selection statistics  𝐴𝐼𝐶 ,  𝐵𝐼𝐶 ,  𝐴∗ ,  𝑊∗  and K-S are 

listed in Tables 1 and 3. Tables 2 and 4 list the MLEs and their corresponding standard 

errors (in parentheses) of the model parameters. 

 

We note from the figures in Table 1 that the BrXFr model has the lowest values of the  𝐴𝐼𝐶 

,  𝐵𝐼𝐶 ,  𝐴∗ ,  𝑊∗  and K-S statistics (for the first data set) as compared to their submodels, 

suggesting that the BrXFr model provide the best fit. The histogram of the first data and 

the estimated pdfs and cdfs of the BrXFr model and its sub-models are displayed in Figure 

7. 

 

Similarly, it is also evident from Table 3 that the BrXFr gives the lowest values the  𝐴𝐼𝐶 ,  

𝐵𝐼𝐶 ,  𝐴∗ ,  𝑊∗  and K-S statistics (for the second data set) as compared to their sub-models, 

and therefore these models can be chosen as the best ones. The histogram of the second 

data and estimated pdfs and cdfs of the BrXFr distribution and its sub-models are displayed 

in Figure 8. 
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In addition, it is clear from Table 5 that the BrXFr gives the lowest values the 𝐴𝐼𝐶 , 𝐵𝐼𝐶 ,  

𝐴∗,  𝑊∗ and K-S statistics (for the third data set) as compared to their sub-models, and 

therefore these models can be chosen as the best ones. The histogram of the second data 

and estimated pdfs and cdfs of the BrXFr distribution and its sub-models are displayed in 

Figure 6. 

Table 1: The statistics AIC, BIC, 𝑊∗, 𝐴∗, K-S and K-S p-value for the Wingo data set. 

Distribution AIC BIC 𝑊∗ 𝐴∗ K-S p-value (K-S) 

BrXFr -38.544 -32.808 0.0514 0.4193 0.0979 0.7235 

Fr -19.701 -15.877 0.3233 2.0301 0.1506 0.2066 

KFr -32.553 -24.905 0.0680 0.5641 0.1053 0.6352 

EFr -17.701 -11.965 0.3233 2.0301 0.1506 0.2064 

BFr -34.395 -26.747 0.0557 0.4711 0.0981 0.7193 

TFr -20.105 -14.369 0.2823 1.8152 0.1370 0.3045 

MOFr -29.889 -24.153 0.1120 0.8560 0.1062 0.6252 

McFr -34.815 -25.255 0.0529 0.4300 0.0980 0.7198 

 

 

Table 2: MLEs and their standard errors (in parentheses) for the Wingo data set. 

Distribution α θ a b γ 

Fr - - 0.4859 3.2078 - 

 - - (0.0227) (0.3263) - 

KFr 0.2953 122.39 21.470 0.7917 - 

 (0.1881) (140.51) (12.846) (0.1490) - 

EFr 0.9047 - 0.5013 3.2077 - 

 (18.784) - (3.2444) (0.3263) - 

BFr 0.3746 78.718 2.6048 1.2430 - 

 (0.4318) (48.446) (4.7654) (0.6754) - 

TFr -0.5816 - 0.4400 3.4974 - 

 (0.2787) - (0.0290) (0.3527) - 

MOFr 52.825 - 0.2897 5.7456 - 

 (96.683) - (0.0783) (0.7440) - 

McFr 0.1963 474.97 33.731 1.3661 0.0397 

 (0.1245) (1006.6) (10.601) (0.2151) (0.0202) 

BrXFr - 0.3519 0.6433 2.2707 - 

 - (0.1904) (0.0669) (0.5062) - 
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Table 3: The statistics AIC, BIC, 𝑊∗, 𝐴∗, K-S and K-S p-value for the survival times data 

set. 

Distribution AIC BIC 𝑊∗ 𝐴∗ K-S p-value (K-S) 

BrXFr 786.24 793.07 0.1400 0.7652 0.0990 0.4806 

Fr 795.29 799.85 0.2148 1.2834 0.1518 0.0721 

KFr 788.66 797.77 0.1417 0.7716 0.1057 0.3964 

EFr 797.29 804.12 0.2147 1.2829 0.1520 0.0716 

BFr 788.59 797.69 0.1366 0.7531 0.1025 0.4350 

TFr 804.77 815.25 0.2568 1.3586 0.1818 0.0474 

MOFr 787.41 794.24 0.1531 0.7742 0.0995 0.4643 

McFr 790.54 801.93 0.1483 0.7663 0.1037 0.4205 

 

Table 4: MLEs and their standard errors (in parentheses) for the survival times data set. 

Distribution α θ a b γ 

Fr - - 54.199 1.4147 - 

 - - (4.788) (0.117) - 

KFr 223.15 5.944 0.1049 0.7031 - 

 (192.21) (5.663) (0.1323) (0.2397) - 

EFr 13.013 - 8.831 1.414 - 

 (73.103) - (35.086) (0.1172) - 

BFr 107.372 27.618 0.3143 0.2705 - 

 (40.840) (10.153) (0.3603) (0.1224) - 

TFr -0.7166 - 1.2656 4.7121 - 

 (0.2616) - (0.0579) (0.3657) - 

MOFr 61.944 - 14.194 2.481 - 

 (103.99) - (8.225) (0.2753) - 

McFr 62.118 33.933 7.164 0.2442 0.7716 
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 (43.329) (16.702) (11.600) (1.871) (0.3272) 

BrXFr - 0.2075 15.012 1.6173 - 

 - (0.0716) (18.888) (3.4146) - 

 

 
4. Bayesian estimation 

In this section, we use Bayesian procedures to construct the estimators of the unknown 

parameters of BrXFr distribution. There are many situations where maximum likelihood 

estimator does not converge, especially with higher dimension models. In such cases, the 

use of Bayesian methods is sought. At first sight, Bayesian methods seem to be very 

complex as the estimators involve intractable integrals. However, the advanced MCMC 

techniques make possible to apply Bayesian methods even in higher dimension models. 

Under Bayesian estimation, we are updating the likelihoods with prior knowledge explore 

the posterior probabilities of the parameters. Here we assume the gamma priors of the 

parameters  (𝜃, 𝑎, 𝑏)  of the following forms 

𝜋1(𝜃) ∼ 𝐺𝑎𝑚𝑚𝑎(𝑐1, 𝑑1), 
 

𝜋2(𝑎) ∼ 𝐺𝑎𝑚𝑚𝑎(𝑐2, 𝑑2) 

and 

𝜋3(𝑏) ∼ 𝐺𝑎𝑚𝑚𝑎(𝑐3, 𝑑3), 
where, 𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑) stands for gamma distribution with shape parameter 𝑐 and scale 

parameter  𝑑 . It is further assumed that the parameters are to be independently distributed. 

The joint prior distribution is given by  

𝜋(𝜃, 𝑎, 𝑏) =
𝑑1

𝑐1

𝛤(𝑐1)

𝑑2
𝑐2

𝛤(𝑐2)

𝑑3
𝑐3

𝛤(𝑐3)
𝜃𝑐1−1𝑎𝑐2−1𝑏𝑐3−1 𝑒𝑥𝑝(−(𝜃𝑑1 + 𝑎𝑑2 + 𝑏𝑑3)). 

The posterior distribution of the parameters can be defined easily.  

It is not easy to calculate Bayes estimates and so the numerical approximation techniques 

are needed. Therefore, we propose the use of MCMC techniques namely Gibbs sampler 

and Metropolis Hastings (MH) algorithm. Since the conditional posteriors of the 

parameters cannot be obtained in any standard forms, we, therefore used a hybrid MCMC 
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strategy for drawing samples from the joint posterior of the parameters. To implement the 

Gibbs algorithm, the full conditional posteriors of  𝛼,  𝛽  and 𝜃 can be defined easily. 

 

The simulation algorithm, we followed is given by 

1) Provide initial values, say  𝜃(0) ,  𝑎(0)  and  𝑏(0) , then at  𝑖 th stage, 

2) Using MH algorithm, Generate 

𝑎(0)~𝜋1(𝑎(𝑖−1)|𝑏(𝑖−1), 𝜃(𝑖−1)) 

3) Using MH algorithm, Generate 

 

𝑏(0)~𝜋1(𝑏(𝑖−1)|𝑎(𝑖−1), 𝜃(𝑖−1)) 

4) Using MH algorithm, Generate  

𝜃(0)~𝜋1(𝜃(𝑖−1)|𝑎(𝑖−1), 𝑏(𝑖−1)) 

5) Repeat steps  2 − 4 ,  𝑀(= 50000)  times to get the samples of size  𝑀  from the  

 corresponding posteriors of interest. 

6) Obtain the Bayes estimates of  𝜃, 𝑎 and 𝑏 using the following formulae 

 

�̂�Bayes =
1

𝑀 − 𝑀0
∑ 𝑎𝑗

𝑀−𝑀0

𝑗=1

 

 

�̂�Bayes =
1

𝑀 − 𝑀0
∑ 𝑏𝑗

𝑀−𝑀0

𝑗=1

 

and  

𝜃Bayes =
1

𝑀 − 𝑀0
∑ 𝜃𝑗

𝑀−𝑀0

𝑗=1

 

respectively, where  𝑀0(≈ 2000)  is the burn-in period of the generated Markov chains. 

7) Obtain the  100 × (1 − 𝜓)%  HPD credible intervals for  𝑎 ,  𝑏  and  𝜃  by applying 

the methodology of Chen et al. (1999). The HPD credible intervals for  𝑎 ,  𝑏  and  𝜃  

are 

  (𝑎(𝑗∗), 𝑎(𝑗∗+[(1−𝜓)𝑀])) ,  (𝑏(𝑗∗), 𝑏(𝑗∗+[(1−𝜓)𝑀]))  and  (𝜃(𝑗∗), 𝜃(𝑗∗+[(1−𝜓)𝑀]))  

respectively. The  𝑗∗  is chosen such that  

𝑎(𝑗∗+[(1−𝜓)𝑀]) − 𝑎(𝑗∗) = 𝑚𝑖𝑛
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

(𝑎(𝑗+[(1−𝜓)𝑀]) − 𝑎(𝑗)), 

 

𝑏(𝑗∗+[(1−𝜓)𝑀]) − 𝑏(𝑗∗) = 𝑚𝑖𝑛
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

(𝑏(𝑗+[(1−𝜓)𝑀]) − 𝑏(𝑗)) 

and  

𝜃(𝑗∗+[(1−𝜓)𝑀]) − 𝜃(𝑗∗) = 𝑚𝑖𝑛
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

(𝜃(𝑗+[(1−𝜓)𝑀]) − 𝜃(𝑗)). 

Here,  [𝑥]  denotes the largest integer less than or equal to  𝑥 . 
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Note that there have been several attempts made to suggesting the proposal density for the 

target posterior in the implementation of MH algorithm. By parametrizing the posterior on 

the entire real line, Gelfand (1990) and Upadhyay (2001) have suggested to use the normal 

approximation of the posterior as a proposal candidate in MH algorithm. Alternatively, it 

is also realistic to have the thought of using the truncated normal distribution without 

parametrizing the original parameters. Therefore, we propose the use of the truncated 

normal distribution as the proposal kernel to the target posterior. 

 

We now provide Bayes estimates and HPD credible intervals of the parameters of BrXFr 

distribution using real data sets. Under MCMC algorithm, truncated normal distribution 

with mean  �̂�  and variance  𝐽(�̂�)
−1

  is taking to be the proposal density for posterior 

sample generation. We generate 50000 samples for the posteriors using algorithm given 

above. Although for any initial values chains converge to their stationary distributions, 

there exits high autocorrelation in the chains. To reduce the autocorrelation, the chains are 

thinned and every 10th value is taken for the estimation. Second and third rows of Figure 

9 show autocorrelation plots based on pig's data for the complete and thinned chains 

respectively.  

 

We observe that after thinning the chains, autocorrelation reduces significantly. It is also 

worth to note from the figure that chains start converging after 2000 iterations. We discard 

first 2000 iterations as a burn-in period of the chains which is enough to remove the effect 

of the initial values. 

 

The MLEs and Bayes estimates along with the confidence intervals are presented in Table 

5 for both the data sets. Since we do not have prior information about the parameters, we 

took hyper-parameters as  𝑐1 = 𝑑1 = 𝑐2 = 𝑑2 = 𝑐3 = 𝑑3 = 0.001 . That results in a 

vague/flat gamma prior distribution of the parameters. 

 

 We can compare both the estimation methods on the bases of standard errors of the 

estimators and width of the confidence intervals. We can observe the following; standard 

errors of Bayes estimators are smaller than that of the MLEs; the width of the HPD intervals 

is smaller than the width of the asymptotic confidence intervals. We may also note that in 

some cases, the lower limit of the asymptotic confidence interval is negative which is not 

realistic. In that case, Bayes HPD intervals are recommended. 
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Table 5: Classical and Bayesian estimation of the parameters Θ=(θ,a,b) based on real data 

sets. 
  Classical estimation Bayes estimation 

  Θ̂MLE SE Θ𝐿 Θ𝑈 Width Θ̂MLE SE Θ𝐿 Θ𝑈 Width 

Wingo θ 0.3519 0.1905 0.2811 0.4233 0.1422 0.3506 0.0319 0.2847 0.4100 0.1253 

 a 0.6433 0.0670 0.6345 0.6521 0.0176 0.6434 0.0034 0.6369 0.6503 0.0133 

 b 2.2703 0.5066 1.7669 2.7729 1.0060 2.2620 0.1971 1.8593 2.6363 0.7770 

Pigs θ 15.048 20.423 -802.477 832.573 1635.050 14.985 2.599 10.100 20.180 10.080 

 a 1.6113 3.6724 -24.8218 28.0445 52.8663 1.6269 0.2627 1.1280 2.1452 1.0172 

 b 0.2074 0.0771 0.1958 0.2191 0.0233 0.2069 0.0064 0.1937 0.2186 0.0249 

 

 

5. Conclusions 

In this paper we introduce a new four-parameter lifetime model called the Burr X Fréchet 

Model (BrXFr). We derive some of its structural properties including ordinary and 

incomplete moments, moment of residual and reversed residual life functions, quantile and 

generating functions, probability weighted moments and order statistics and their moments. 

The new density function can be expressed as a linear mixture of Fr densities. The 

maximum likelihood method is used to estimate the model parameters. Censored maximum 

likelihood estimation is presented in general case of multi-censored data. Simulation results 

to assess the performance of the maximum likelihood estimators are discussed in case of 

uncensored data. We demonstrate empirically the importance and flexibility of the new 

model in modeling various types of data. Bayesian estimation is performed by obtaining 

the posterior marginal distributions of model parameters. We use the simulation method of 

MCMC by the Metropolis-Hastings algorithm in each step of Gibbs algorithm. The trace 

plots and estimated conditional posterior distributions of parameters are presented. We 

hope that the proposed model will attract wider applications in areas such as engineering, 

survival and lifetime data, economics (income inequality), meteorology, hydrology, and 

others. 
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