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Abstract

In this work, we propose a new class of lifetime distributions calledthe generalized odd Weibull
generatedfamily. It can provide better fits than some of the well known lifetime models and this fact
represents a good characterization of this family. Some of its mathematical properties are derived. The
maximum likelihood method is used for estimating the model parameters. We study the behaviour of the
estimators by means of two Monte Carlo simulations. The importance of the family illustrated by means of
two applications to real data sets.

Keywords: Generated distribution; Maximum likelihood; Moment; Quantile function;
Simulation.

1. Introduction

Recently, some attempts have been made to define new families of distributions that
extend well-known distributions and at the same time provide great flexibility in
modelling data in practice. So, several classes by adding one or more parameters to
generate new distributions have been proposed in the statistical literature. Some well-
known generators are Gupta et al. (1998) who proposed the exponentiated-G class, which
consists of raising the cumulative distribution function (cdf) to a positive power
parameter. Many other classes cited by Marshall and Olkin (1997), Eugene et al. (2002),
Cordeiro et al. (2013), Alzaatreh et al. (2013), Yousof et al. (2015), Merovc et al. (2016),
Yousof et al. (2016), Alizadeh et al. (2016a,b), Afify et al.(2016a,b,c,d), Aryal and
Yousof (2017), Korkmaz and Geng (2017), Hamedani et al. (2017), Brito et al. (2017),
Alizadeh et al. (2017b), Cordeiro et al. (2017a,b), Yousof et al. (2017a,b,c,d), Nofal et al.
(2017), Hamedani et al. (2017), Hamedani et al. (2018), Yousof et al. (2018), Korkmaz et
al. (2018), among others. Let r(t) be the probability density function (pdf) of a random
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variable T € d,e] for —co < d < e < oo and let W[G(x)] be a function of the cdf of a
random variable X such that W |[G (x)] satisfies the following conditions:
O WG] €d,e],
(ii) WIG(x)]isdifferentiableandmonotonicallynon — decreasing, and Q)
(iii) W[G(x)] > d as x > —and W[G(x)] > d as x — oo.
Alzaatreh et al. (2013) defined the T-X family of distributions by

Fix) = [ v a, )
where WG (x)] satisfies the conditions (1). The pdf corresponding to (2) is given by
fe0) = W@ rw[6 ) 3)

In this paper, we propose a new wider class of continuous distributions called the

Generalized Odd Weibull Generated (“GOWG-G” for short) family by taking
WIG(x)] = % and r(t) =ptP-let’, t>0,a>0,8>0. Its cumulative
distribution function (cdf) is given by
e pn B G 1P
F(x;a,B,¢) =[] prite™ =1 —exp | oo | )

The corresponding pdf is given by ,
fria, B, ¢) = LLCGDECD T o {_[ e ] } (%)

[1-G (x;$)*]P+1 1-G(x;9)%
where g(x; ¢) is the baseline pdf. Hereafter, a random variable X with density function
(5) is denoted by X~GOWG-G(«, B, ¢). Further, we can omit sometimes the dependence
on the vector ¢ of the parameters and write simply G (x) = G(x; ¢) and g(x) = g(x; ¢).

The hazard rate function (hrf) of X becomes

apg @) G ¥
h(xa,B.¢) = = oap (6)

An interpretation of the GOW family (4) can be given as follows. Let T be a random
variable describing a stochastic system by the cdf G (x)* (for « > 0). Then, if the random
variable X represents the odds ratio, the risk that the system following the lifetime T will
be not working at time x is given by G(x)%*/[1 — G (x)“]. Suppose that we are interested
in modeling the randomness of the odds ratio using a Weibull model with cdf R(t) = 1 —
exp(—t#) (for ¢ > 0). Then, the cdf of X can be written as

G)*
PriX<x)=R [1—0%)“]’

which is exactly equal to the family (4).

If U~u(0,1) then the solution of nonlinear equation

X, = G1 ([—log(l — u)]c%ﬁ {1 + [—log(1 — u)]%}_a>. (7

542 Pak.j.stat.oper.res. Vol.XIV No.3 2018 pp541-556



The Generalized Odd Weibull Generated Family of Distributions: Statistical Properties and Applications

By using taylor expansion and generalized binomial expansion we can demonstrate that
the pdf (5) of X has the expansion

fGa,B,¢) = Xij=0 Wijhap(i+1)+ai(*), (8)
where

and hgs(x) = §G°~1(x)g(x) is the pdf of the Exp-G distribution with power parameter §.
The corresponding GOWG-G cdf is obtained by integrating (8)

FOa,B,9) = Xij=0 WijHapi+1)+aj+1(X), 9)
where Hg(x) = G%(x) denotes the exponentiated-G (“Exp-G” for short) cumulative
distribution. Equation (7) reveals that the GOWG-G density function is a linear
combination of Exp-G density functions. Thus, some mathematical properties of the new
model can be derived from those properties of the Exp-G distribution. For example, the
ordinary and incomplete moments and moment generating function (mgf) of X can be
obtained from those quantities of the Exp-G distribution. Let a = inf{x|G (x) > 0}, the
asymptotics of equations (4), (5) and (6) as x — a are given by

F(x)~G(x)*fasx — a,
f)~aBg(x) G(x)* tasx — a,
h(x)~afg(x) G(x)*¥asx - a.
The asymptotics of equations (4), (5) and (6) as x — oo are given by
1 — F(x)~exp{—[aG(x)] P}asx - o
f)~BaF g(x)G(x) P+ Vexp{~[aG(x)] Flasx - o,
h(x)~Ba=Bg(x)G(x)" ¥ Vasx - o,

The rest of the paper is organized as follows. In Section 2, we derive some of the
mathematical properties of the new family. Maximum likelihood estimation for the model
parameters under uncensored data is addressed in Section 3. Two simulation studies are
performed in Section 4 to assess the performance of the maximum likelihood estimations.
In Section 5, potentiality of the proposed class is illustrated by means of two real data
sets. Finally, Section 6 provides some concluding remarkes.

2. Some statistical properties

2.1 General properties

The " moment of X, say u.., follows from (8) as
wr=EX") = X0 Wi i E(Zig(iv1)ra))- (10)

Henceforth, Z, denotes the Exp-G distribution with power parameter ¢. For ¢ > 0, we
have E(Z7) = 717 x"g(x; 9)G(x; 9)°~1dx, which can be computed numerically in
terms of the baseline quantile function (af) Qc(w; ) =G '(w;9) as E(Z}) =
¢ fol Qs (u; @)™u'du. The variance, skewness, and kurtosis measures can now be

calculated using the well known relations. The nt* central moment of X, say M,,, is given
by
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M, =EX —u)" = ”Z Xr=0 ll]TE( ﬁ(1+1)+a1)

where [; ;. = w; ; (=)™ (r) (u.)™". The st" incomplete moment, say ¢ (t), of X can
be expressed from (8) as

0s(t) = [ x°F(0)dx = TF wij [ ¥ hapisnyray ()dx. (1)
The mgf My(t) = E(e**) of X. can be derived from equation (8) as My(t) =
2ij=0 Wi,iMapi+1)+aj(t), Where M.(t) is the mgf of Z,. Hence, My(t) can be
determined from the Exp-G generating function.

2.2 Moments of the residual and reversed residual lifes

The n‘" moment of the residual life, say z,(t) = E[(X —t)*|X >t]ln=12,.. ,
uniquely determines F (x) (see Navarro et al., 1998). The nt® moment of the residual life
of X isgiven by z,(t) = [1 - F(t)]?! f:o (x — t)"dF (x). Therefore,

z,(t) = [1 = FOI ' =0 ZOYL-,,-,T S X hap(isnyea; (0)dx, (12)

where Y; i, = w;; (:l) (—t)™". The n*" moment of the reversed residual life, say
M,(t) =E[(t—X)"|X<t] for t>0 and n=1,2,.. uniquely determines F(x)
(Navarro et al., 1998). We obtain Z,(t) = [F(t)]” f (t x)"dF (x). Therefore, the
nt™ moment of the reversed residual I|fe of X becomes

A (t) - [F(t)] 1 l]k 0 2 ]rf x haﬁ(1+1)+a](x)dx (13)

where Y7, = w; (=17 (r> t"T. The mean inactivity time (MIT) or mean waiting time

(MWT) also called the mean reversed residual life function is given by Z,(t) = E[(t —
X)|X < t], and it represents the waiting time elapsed since the failure of an item on
condition that this failure had occurred in (0, t).

2.3 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon, 1948; Renyi, 1961).
The Rényi entropy of a random variable with pdf f(x) is defined as

Ir(y) = —log[f ¥ (x)dx],
for y >0 and y # 1. The Shannon entropy of a random variable X is defined by
E{—log[f (X)]}. It is the special case of the Rényi entropy when y T 1. Direct calculation
yields
E{-log[f (X)]} = —log(apB) — E{loglg(X; $)1} + (1 —
ap)E{log[G(X; ¢)]}

+(1+ B)E{log[l —G(X; P)*|}+E {[%]ﬁ}

First we define and compute
1

A(aq,ay;a,B) = J;) u® (1 —u*) "% exp [_ (1 ﬁaua)ﬂ] du.
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Using generalized binomial expansion and taylor expansion , we obtain
co

Ay aiaf)= ) (~D™E 7 (a +api+aj+ 1) (].‘(“2 !

i,j=0
Proposition 1 Let X be a random variable with pdf (5). Then

E{log[G(N)]} = aB - A(aB +t = 1,5 + 1, B)]e=o
E{log[1 — ()]} = aB - A(aB — 1B + 1~ t; @ B)l=o

g {[ 0% ]B} = aBAQaf — 1,28 + 1;a, B)

1-G(X)%

The simplest formula for the entropy of X is given by
E{-log[f (X )]}a= —log(ap) — Eflog[g(X; )]}
t(A—af)ap Alaf +t—1,5+1a,p)|c=0
+(B+ Dap-A@f — 1,5 +1 -t 5)le=o
+afACaf — 1,20+ 1;a,B)

After some algebraic developments, we obtain an alternative expression for
1 oo * PR
r(NIr () = 75 log(ap) + = 108[f o wi 1 (e, B,y 1, )]

where
@, .y,i)) = J; gGo7 Gy @ -Drebiraidy
and
wiy = -y (VP DA
2.4 Order statistics

Suppose X;, X5, ..., X, is a random sample from the F-G distribution. Let X;.,, denote the
ith order statistic. The pdf of X;.,, can be expressed as

, fin(@) = Kf(x) F"Y () {1 = F()}v i =
ke o (7 r Feo
where K =n!/[(i —1)! (n—1i)!]. Then, the density function of the X, can be
expressed as

fim = Z?(,)szo ti,jhaﬁ(r+1)+as(x) (14)
where

= n—i itj-1 (DR ey =1\ (—B(r +1) — 1
tl’] = Kaps j=0 &k=0 r'laf(r+1)+as] j (5 )

With using this expansion we can easily obtain moments,generating function and
incomplete moment of order statistics from any G. Equation (14) reveals that the pdf of
the GOWG-G order statistic can be expressed as a linear combination of the Exp-G
densities. Therefore, some statistical and mathematical properties of these order statistics
can be obtained by using this result. Analogous to the ordinary moments we can get the
L-moments but it can be estimated by the linear combinations of order statistics in (14).
They exist as long the mean of the distribution exists, even if some higher moments may
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not exist, and are relatively robust to the effects of outliers. Based upon the moments in
Equation (14), we can derive explicit expressions for the L-moments of X as infinite
weighted linear combinations of the means of suitable GOWG-G order statistics. They
are linear functions of expected order statistics defined by

—_ -1
A =2802h DT ) EGra) T 2 1.

2.5 Probability weighted moments

Generally, the probability weighted moments (PWMs) method can be used for estimating
parameters of a distribution whose inverse form cannot be expressed explicitly. The
PWMs are expectations of certain functions of a random variable and they can be defined
for any random variable whose ordinary moments exist. They have low variance and no
severe bias and can compare favorably with estimators obtained by the maximum
likelihood method. The (s,7)*"* PWM of X following the GOW-G family of distribution,
say psr, is formally defined by

psr = E(XFQOT} = [ xFQO"f(X)dx.
From Equation (4) and (5) , we can write

fOIF ()" = Xmi=o0 Qmihapmen)+ar(X),
where

_vr apEnfHmHigepm —f(m+1) —1
Qm'l - Zk:o m![af(m+1)+al] (l )

Finally, the (s,7)*" PWMs of X can be obtained from an infinite linear combination of
Exp-G moments given by

Psr = Zl?m=0 Qk,mE(ch,l?(m+1)+al)'

3. Special GOWG models

In here, we obtain the new two extended models based on the new family. We also note
that GOWG-G family reduces to odd Weibull-G (OW-G) family, introduced by
Bourguignon et al. (2014), for a = 1.

3.1 The GOWG-normal

We define the GOWG-normal (GOWG-N) distribution from (5) by taking G(x; u, o) =
@ (%) and g(x; u, 0) = o 1¢ (%) with & = (u, o), where ¢(-) and () are the pdf
and cdf of the standard normal distribution, respectively, where x € R, 0 =
(a,B,u,0),u € Rand a, B,0 > 0. We plot this pdf and its hrf in Figure 1. From Figure

1, we see that the pdf shapes of the GOWG-N are left skewed and bi-modal. Also, its hrf
are increasing or firstly unimodal and then increasing.
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2 ¢ 5 o 0 1 2 2

Figure 2: Plots of the pdf and hrf of the GOWG-W distribution

3.2 The GOWG-Weibull

Consider the cdf G(x) = 1 — exp[—(Ax)"] of the Weibull distribution with scale 1 > 0
and shape y > 0. The pdf of the GOWG-Weibull (GOWG-W) model (for x > 0) follows
from (5). Some plots of the GOWG-W pdf and hrf for selected parameter values are
displayed in Figure 2. Figure 2 reveals that the GOWG-W density can be concave down,
right skewed or bi-modal. The hrf of the XG-W model can be increasing, decreasing,
bathtub or unimodal then bathtub.

4. Estimation

Several approaches for parameter estimation were proposed in the literature but the
maximum likelihood method is the most commonly employed. The MLEs enjoy
desirable properties and can be used for constructing confidence intervals and also for
test statistics. The normal approximation for these estimators in large samples can be
easily handled either analytically or numerically. Here, we consider the estimation of the
unknown parameters of the new family from complete samples only by maximum
likelihood. Let x4, ..., x,, be a random sample from the GOWG-G distribution with a (q +
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2) x 1 parameter vector ® =(a, 5,¢) Y, where ¢ is a g x 1 baseline parameter vector.
The log-likelihood function for @ is given by

£(0) = nloga + nlogB + X7, logg (x;; ¢) + (af —
1) Xz, logG (x;; ¢)
—(B + 1) Xio logs; — Xiso b (15)

a e % : o
where s; =1 — G(x; ¢p)*and p; = [S—] . Equation of (15) can be maximized either

directly by using the R (optim function), SAS (PROC NLMIXED) or Ox program (sub-

routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by

af af o0f o0f

differentiating (15). The score vector components, say U(0) = o= (Q’ﬁ'ﬁ)ﬁ =

(Ua Us, U¢r)T, are given by
Ua =7+ B Eiko logG(xi; ) — (B + D Bk 2 — Zik ;i_
U = % + @ Lo 10gG (xi; ) — Xilo logs; — Xizo ai
and (forr =1,...,q)
Ug, = 2. LD (af — 1) X1 Grlid) _ B+DYL, z_i_ ito Gi.

R TE =0 Gxs)
Where
rro _09xi®) o _06Gpg) | log6xg) , _ _  g(x¢9)
gr(xi' ¢) - 6¢ ) Gr(xl' ¢) - ad’r JZl - G(x;d))_“ ’ tl - a G(x;d))l_a'
lo [G(x;(p)“]

Zi[si+G (x;$)%] 87 [sizi+t:G(x;¢)%]

di = —p— —ip di = — —panda; = —f ="
T s

Setting the nonlinear system of equations U, = Ug = 0 and Ug, = 0 and solving them

simultaneously yields the MLEs 8 = (&, £, ")". To solve these equations, it is usually
more convenient to use nonlinear optimization methods such as the quasi-Newton
algorithm to numerically maximize £(©). For interval estimation of the parameters, we
can evaluate numerically the elements of the (q + 2) X (q + 2) observed information

2
matrix ](®)=(_%)' Under standard regularity conditions when n — oo, the

distribution of ® can be approximated by a multivariate normal Np(O,](@)‘l)
distribution to construct approximate confidence intervals for the parameters. Here, J(0)
is the total observed information matrix evaluated at ®. The method of the re-sampling
bootstrap can be used for correcting the biases of the MLEs of the model parameters.
Good interval estimates may also be obtained using the bootstrap percentile method.

5. Simulation studies

In this Section, we perform the two simulation studies by using the GOWG-N and
GOWG-W distributions to see the performance of MLEs of these distribution. The
random numbers generation is obtained by inverse of their cdfs. Inverse process and
results of MLEs were obtained using optim-CG routine in the R programme.In the first
simulation study, we obtain the graphical results. We generate N = 1000 samples of size
n = 20,25, ...,1000 from GOWG-N distribution with true parameters values a« = 5, § =
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0.5, u =0 and o = 1. In this simulation study, we empirically calculate the mean,
standard deviations (sd), bias and mean square error (MSE) of the MLEs. The bias and
MSE are calculated by (for h = «, 58, u, o)

— 1 ~
Buas, = -=%i2%° (hi — h),
and
7CF — _ 1 $1000 (7 2
MSE, = =322 (hi — h)
respectively. We give results of this simulation study in Figure 3.
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Figure 3: Simulation results of the special GOWG-N distribution

In the second simulation study, we generate 1,000 samples of sizes 20,50 and 100 from
selected GOWG-W distributions. For this simulation study, we obtain the empirical
means and sd’s of the parameters.The results of this simulation study are reported in
Table 1.

From Figure 3, we observe that when the sample size increases, the empirical means
approach to true parameter value. At the same time, the all biases and MSEs approach to
0. The standard deviations decrease in all the cases, while sample size increases. Table 1
shows that when the sample size increases, the empirical means approach to true
parameter value and the sds decreases in all the cases as expected.
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Table 1:  Empirical means and standard deviations (in parentheses) for the special
GOWG-W distributions.

Parameters n=20 n=>50 n =100
B Ay a B 2 7 a B 3 7 @ B 3 7
1,05,05,1 1.2829 0.4870 0.6737 1.5813 1.0661 0.5525 0.5375 1.2106 1.0543 0.5333 0.5037 1.1291

(05810)  (0.4088)  (0.4648)  (0.8087)  (0.4869)  (0.3391)  (0.2900)  (0.4497)  (0.4321)  (0.2496)  (0.2094)  (0.3417)
05050505 05298 05416 07052 06926 05039 05028 05477 06203 04987 05010 05424 05573
(0.2500) (0.3362)  (0.3142)  (0.3521)  (0.1456)  (0.1684)  (0.2589)  (0.2441)  (0.1341)  (0.1486)  (0.2090)  (0.1439)

2222 2.0867 1.9811 2.0195 2.1969 2.0237 19962  2.0035 2.0859 2.0059 1.9940 1.9991 2.0619
(0.3678)  (0.3205)  (0.1522)  (0.4265)  (0.2801)  (0.1928)  (0.1263)  (0.2974)  (0.3114)  (0.1482)  (0.1292)  (0.2396)
301,201 3.0476 0.0875 19928 0.1080 3.0079 01032 2.0040 0.1028 3.0040  0.1037 1.9977 0.0997
(0.2549)  (0.1178)  (0.0439)  (0.0272)  (0.2012)  (0.0292)  (0.0307)  (0.0129)  (0.2259)  (0.0233)  (0.0364)  (0.0088)
1,234 1.2094 19888  3.1249  4.0625 1.0836 20246 30462  4.0314 1.0704 1.9896 30443 40272
(0.3132)  (0.2964)  (0.1723)  (0.5783)  (0.2908)  (0.2022)  (0.1714)  (0.3843)  (0.2098)  (0.1740)  (0.1235)  (0.3399)
4321 24,0056 3.0048 1.9574 10749 4.0060 30138 1.9756 10291 4.0068  3.0091 1.9891 1.0165

(0.1986)  (0.1664)  (0.1789)  (0.1707)  (0.0525)  (0.0705)  (0.1032)  (0.0893)  (0.0449)  (0.0514)  (0.0759)  (0.0635)

6. Real data applications

In this section, we illustrate the flexibility of the GOWG-N and GOWG-W models via
two data sets. We compare these models with several extensions and generalizations of
the normal and Weibull distributions in the literature. To determine the best model, we
also computed the estimated log-likelihood values ¢, Kolmogorov-Smirnov (KS),
Cramervon Mises (W*) and Anderson-Darling (A*) goodness of-fit statistics for
distribution models. We note that the statistics W* and A* are described in detail in Chen
and Balakrishnan (1995). In general, it can be chosen as the best model which has the
smaller the values of the K-S, W* and A* statistics and the larger the values of £ and p-
values. All computations are performed by the maxLik routine in the R programme. The
details are the followings.

6.1 Windshield data set

As first example, we consider the data studied by Murthy et al. (2004) representing the
failure times for a particular windshield device. This data set has been analyzied by Brito
et al. (2017) and Korkmaz et al. (2017). We compare the GOWG-N model with
Gompertz-normal (Gom-N) model (Alizadeh, et al., 2017a), odd exponentiated half
logistic normal (OEHL-N) model (Afify, et al., 2017e), odd Lindley normal (OL-N)
model (da-Silva et al., 2017), odd log logistic normal (Braga et al., 2016) model and odd
Weibull normal (OW-N) (Bourguignon et al., 2014) model. We give MLEs of
parameters, £, A*,W* and KS goodness-of-fits statistics in Table 2 for this data. Table 2
shows that the GOWG-N model has the smallest values of the A* andKS statistics, and
has the biggest # value among the fitted models. Hence, it could be chosen as the best
model.
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Table 2: MLEs of the model parameters for the windshield data, the
corresponding standard errors (given in parentheses), A*,W* and KS
statistics for the applications models

Model a B 13 g -2 A w* KS

GOWG-N 1.3603 0.1410 3.0043 0.4152 124.1260 0.5471 0.1040 0.0819
(1.1740) (0.0739)  (0.4694) (0.1978)

Gom-N 0.0288 0.0768 0.7449 05327 127.1258 0.5586 0.0825 0.0849
(0.0.0145) (0.0139)  (0.0001) (0.0001)

EHOLL-N 0.0983 0.2114 3.9034 0.4847 125.6029 1.5225 0.3170 0.1183
(0.0173)  (1.001E-07) (0.0001) (1.23E-6)

OL-N 7.3048 52721 19995 129.8938 1.2223 0.2098 0.1194
(4.8310)  (0.9752) (0.2310)

OLL-N 0.4519 2.6262 0.6025 127.0619 0.6748 0.1246 0.0950
(0.2321) (0.1267) (0.2179)

OW-N 0.1321 3.1654 0.3635 124.1876 0.7466 0.1525 0.0940

(0.0663)  (0.0874) (0.1106)

The the plots of the fitted pdfs and cdfs for models are shown in Figure 4. Also, Figure 5
displays the probability-probability (P-P) plots for the models. From these plots, we can
conclude that the GOWG-N distribution is suitable to this data set. The GOWG-N model
captures the data as bimodal.

Figure 4: The fitted pdfs (left) and cdfs (right)for the first data set

(a) GWOG-N (b) Gom-N (¢) OL-N
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(d) OW-N (¢) OEHL-N (f) OLL-N
Figure 5: P-P plots for the first data set data

6.2 Failure times data set

The following data set represents the failure times (in minutes) for a sample of 15
electronic components in an accelerated life test studied by Lawless (2003) and Mir
Mostafaee et al. (2016). The data are: 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6,
37.3, 46.3, 53.9, 59.8, 66.2. We compare the GOWG-W model with Gompertz-Weibull
(Gom-W) model (Alizadeh, et al., 2017a), odd exponentiated half logistic Weibull
(OEHL-W) model (Afify, et al., 2017e), Kumaraswamy Weibull (Kw-W) model
(Cordeiro et al., 2010), odd log logistic Weibull (Cruz et al., 2016) model and odd
Weibull Weibull (OW-W) (Bourguignon et al.,, 2014) model. We give MLEs of
parameters, £, A*,W* and KS goodness-of-fits statistics in Table 3 for this data. Table 3
shows that the GOWG-W model has the smallest values of the A*, W* and KS statistics,
and has the biggest £ value among the fitted models. Hence, it could be chosen as the best
model.

Table3: MLEs of the model parameters for the failure times data, the
corresponding standard errors (given in parentheses), A*,W* and KS
statistics for the applications models

Model a B y % —? A w* KS
GOWG-W 7.5748 0.0400 0.0346 4.2841 62.4511 0.1505 0.0230 0.0943
(2.5198) (0.0101) (0.0002) (0.0190)

Gom-W 0.2385 0.1067 0.2158 0.8163 63.7255 0.1776 0.0273 0.1307
(0.6532) (0.2076) (0.4971) (0.4930)
Kw-W 0.0834 09595 00156 95058 62.9480 0.2528 0.0497 0.1693

(0.0279) (0.3159) (0.0001) (0.0016)
EHOLL-W  0.0776 1.0598 0.0153 9.1687 62.8915 0.2324 0.0396 0.1484
(0.0202) (0.0008) (0.0007) (0.0007)

OLL-W 0.4382 00321 26259 634573 0.2235 0.0429 0.1606
(0.2465) (0.0066) (1.2559)
OW-W 0.2163 0.02259 4.4546 63.0820 0.3683 0.0781 0.1857

(0.0536) (0.0019) (0.0491)

The the plots of the fitted pdfs and cdfs for models are shown in Figure 6. Also, Figure 7
displays the P-P plots for the models. From these plots, we can conclude that the GOWG-
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W distribution is suitable to this data set. The GOWG-W model also captures the data as
bimodal.

g 34 ol
gz | . o]
ie
: )
1 y Kw—W
| / - oELW
g - s 17 owow
-} YID BTD 3'0 4:3 5;) 6‘0 I 3 l::) 2;3 ;ZI 0 5’." E-l)
faiure times failure times
Figure 6: The fitted pdfs (left) and cdfs (right)for the second data set
! - ‘s 3 ? s
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& } I’
} i !
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Figure 7: P-P plots for the second data set data
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7. Conclusions

In this work, we propose a new class of lifetime distributions calledthe generalized odd
Weibull generatedfamily. It can provide better fits than some of the well known lifetime
models and this fact represents a good characterization of this family. Some of its
mathematical properties are derived. The maximum likelihood method is used for
estimating the model parameters. We study the behaviour of the estimators by means of
two Monte Carlo simulations. The importance of the family illustrated by means of two
applications to real data sets.
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