
Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp541-556 

The Generalized Odd Weibull Generated Family of Distributions: 

Statistical Properties and Applications 

Mustafa Ç. Korkmaz 
Department of Measurement and Evaluation, Artvin Çoruh University 

Artvin, Turkey 

mcagatay@artvin.edu.tr 
 

Morad Alizadeh 
Department of Statistics, Persian Gulf University, Bushehr, Iran 

moradalizadeh78@gmail.com 

 

Haitham M. Yousof 
Department of Statistics, Mathematics and Insurance, Benha University, Benha, Egypt 

haitham.yousof@fcom.bu.edu.eg 

 

Nadeem Shafique Butt 
Department of Family and Community Medicine King Abdul Aziz University 

Jeddah, Kingdom of Saudi Arabia 

nshafique@kau.edu.sa 

Abstract 

In this work, we propose a new class of lifetime distributions calledthe generalized odd Weibull 

generatedfamily. It can provide better fits than some of the well known lifetime models and this fact 

represents a good characterization of this family. Some of its mathematical properties are derived. The 

maximum likelihood method is used for estimating the model parameters. We study the behaviour of the 

estimators by means of two Monte Carlo simulations. The importance of the family illustrated by means of 

two applications to real data sets.  

Keywords: Generated distribution; Maximum likelihood; Moment; Quantile function; 

Simulation.  

1. Introduction 

Recently, some attempts have been made to define new families of distributions that 

extend well-known distributions and at the same time provide great flexibility in 

modelling data in practice. So, several classes by adding one or more parameters to 

generate new distributions have been proposed in the statistical literature. Some well-

known generators are Gupta et al. (1998) who proposed the exponentiated-G class, which 

consists of raising the cumulative distribution function (cdf) to a positive power 

parameter. Many other classes cited by Marshall and Olkin (1997), Eugene et al. (2002), 

Cordeiro et al. (2013), Alzaatreh et al. (2013), Yousof et al. (2015), Merovc et al. (2016), 

Yousof et al. (2016), Alizadeh et al. (2016a,b), Afify et al.(2016a,b,c,d), Aryal and 

Yousof (2017), Korkmaz and Genç (2017), Hamedani et al. (2017), Brito et al. (2017), 

Alizadeh et al. (2017b), Cordeiro et al. (2017a,b), Yousof et al. (2017a,b,c,d), Nofal et al. 

(2017), Hamedani et al. (2017), Hamedani et al. (2018), Yousof et al. (2018), Korkmaz et 

al. (2018), among others. Let 𝑟(𝑡) be the probability density function (pdf) of a random 
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variable 𝑇 ∈ 𝑑, 𝑒] for −∞ ≤ 𝑑 < 𝑒 < ∞ and let 𝑊[𝐺(𝑥)] be a function of the cdf of a 

random variable 𝑋 such that 𝑊[𝐺(𝑥)] satisfies the following conditions:  

(

(𝑖) 𝑊[𝐺(𝑥)] ∈ 𝑑, 𝑒],

(𝑖𝑖) 𝑊[𝐺(𝑥)]isdifferentiableandmonotonicallynon − decreasing, and

(𝑖𝑖𝑖) 𝑊[𝐺(𝑥)] → 𝑑   as   𝑥 → −∞ and 𝑊[𝐺(𝑥)] → 𝑑   as   𝑥 → ∞.

 (1) 

Alzaatreh et al. (2013) defined the T-X family of distributions by  

𝐹(𝑥) = ∫
𝑊[𝐺(𝑥)]

𝑑
𝑟(𝑡) 𝑑𝑡,       (2) 

where 𝑊[𝐺(𝑥)] satisfies the conditions (1). The pdf corresponding to (2) is given by  

𝑓(𝑥) = {
𝑑

𝑑𝑥
𝑊[𝐺(𝑥)]} 𝑟{𝑊[𝐺(𝑥)]}       (3) 

 

In this paper, we propose a new wider class of continuous distributions called the 

Generalized Odd Weibull Generated (“GOWG-G” for short) family by taking 

𝑊[𝐺(𝑥)] =
𝐺(𝑥;𝜙)𝛼

1−𝐺(𝑥;𝜙)𝛼
 and 𝑟(𝑡) = 𝛽𝑡𝛽−1𝑒−𝑡𝛽

,   𝑡 > 0, 𝛼 > 0 , 𝛽 > 0. Its cumulative 

distribution function (cdf) is given by 

 

𝐹(𝑥; 𝛼, 𝛽, 𝜙) = ∫

𝐺(𝑥;𝜙)𝛼

1−𝐺(𝑥;𝜙)𝛼

0
𝛽𝑡𝛽−1𝑒−𝑡𝛽

= 1 − exp {− [
𝐺(𝑥;𝜙)𝛼

1−𝐺(𝑥;𝜙)𝛼]
𝛽

}.  (4) 

 

The corresponding pdf is given by  

𝑓(𝑥; 𝛼, 𝛽, 𝜙) =
𝛼𝛽𝑔(𝑥;𝜙) 𝐺(𝑥;𝜙)𝛼𝛽−1

[1−𝐺(𝑥;𝜙)𝛼]𝛽+1   exp {− [
𝐺(𝑥;𝜙)𝛼

1−𝐺(𝑥;𝜙)𝛼]
𝛽

},   (5) 

where 𝑔(𝑥; 𝜙) is the baseline pdf. Hereafter, a random variable 𝑋 with density function 

(5) is denoted by 𝑋~GOWG-G(𝛼, 𝛽, 𝜙). Further, we can omit sometimes the dependence 

on the vector 𝜙 of the parameters and write simply 𝐺(𝑥) = 𝐺(𝑥; 𝜙) and 𝑔(𝑥) = 𝑔(𝑥; 𝜙). 
 

The hazard rate function (hrf) of 𝑋 becomes  

ℎ(𝑥; 𝛼, 𝛽, 𝜙) =
𝛼𝛽𝑔(𝑥) 𝐺(𝑥)𝛼𝛽−1

[1−𝐺(𝑥)𝛼]𝛽+1 .      (6) 

 

An interpretation of the GOW family (4) can be given as follows. Let 𝑇 be a random 

variable describing a stochastic system by the cdf 𝐺(𝑥)𝛼 (for 𝛼 > 0). Then, if the random 

variable 𝑋 represents the odds ratio, the risk that the system following the lifetime 𝑇 will 

be not working at time 𝑥 is given by 𝐺(𝑥)𝛼/[1 − 𝐺(𝑥)𝛼]. Suppose that we are interested 

in modeling the randomness of the odds ratio using a Weibull model with cdf 𝑅(𝑡) = 1 −
exp(−𝑡𝛽) (for 𝑡 > 0). Then, the cdf of 𝑋 can be written as  

 𝑃𝑟(𝑋 ≤ 𝑥) = 𝑅 [
𝐺(𝑥)𝛼

1−𝐺(𝑥)𝛼], 

which is exactly equal to the family (4). 

 

If 𝑈~𝑢(0,1) then the solution of nonlinear equation  

𝑥𝑢 = 𝐺−1 ([−log(1 − 𝑢)]
1

𝛼𝛽 {1 + [−log(1 − 𝑢)]
1

𝛽}
−

1

𝛼

).   (7) 
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By using taylor expansion and generalized binomial expansion we can demonstrate that 

the pdf (5) of 𝑋 has the expansion  

𝑓(𝑥; 𝛼, 𝛽, 𝜙) = ∑∞
𝑖,𝑗=0 𝑤𝑖,𝑗ℎ𝛼𝛽(𝑖+1)+𝛼𝑗(𝑥),      (8) 

where  

𝑤𝑖,𝑗 = 𝛼𝛽(𝑖!)−1(−1)𝑖+𝑗[𝛼𝛽(𝑖 + 1) + 𝛼𝑗]−1 (
−𝛽(𝑖 + 1) − 1
𝑗

), 

and ℎ𝛿(𝑥) = 𝛿𝐺𝛿−1(𝑥)𝑔(𝑥) is the pdf of the Exp-G distribution with power parameter 𝛿. 

The corresponding GOWG-G cdf is obtained by integrating (8) 

𝐹(𝑥; 𝛼, 𝛽, 𝜙) = ∑∞
𝑖,𝑗=0 𝑤𝑖,𝑗𝐻𝛼𝛽(𝑖+1)+𝛼𝑗+1(𝑥),    (9) 

where 𝐻𝛿(𝑥) = 𝐺𝛿(𝑥) denotes the exponentiated-G (“Exp-G” for short) cumulative 

distribution. Equation (7) reveals that the GOWG-G density function is a linear 

combination of Exp-G density functions. Thus, some mathematical properties of the new 

model can be derived from those properties of the Exp-G distribution. For example, the 

ordinary and incomplete moments and moment generating function (mgf) of 𝑋 can be 

obtained from those quantities of the Exp-G distribution. Let 𝑎 = inf{𝑥|𝐺(𝑥) > 0}, the 

asymptotics of equations (4), (5) and (6) as 𝑥 → 𝑎 are given by  

 𝐹(𝑥)~𝐺(𝑥)𝛼𝛽𝑎𝑠𝑥 → 𝑎, 
 𝑓(𝑥)~𝛼𝛽𝑔(𝑥) 𝐺(𝑥)𝛼𝛽−1𝑎𝑠𝑥 → 𝑎, 
 ℎ(𝑥)~𝛼𝛽𝑔(𝑥) 𝐺(𝑥)𝛼𝛽−1𝑎𝑠𝑥 → 𝑎. 

The asymptotics of equations (4), (5) and (6) as 𝑥 → ∞ are given by 

 1 − 𝐹(𝑥)~exp{−[𝛼�̅�(𝑥)]−𝛽}𝑎𝑠𝑥 → ∞ 

 𝑓(𝑥)~𝛽𝛼−𝛽𝑔(𝑥)�̅�(𝑥)−(𝛽+1)exp{−[𝛼�̅�(𝑥)]−𝛽}𝑎𝑠𝑥 → ∞, 

 ℎ(𝑥)~𝛽𝛼−𝛽𝑔(𝑥)�̅�(𝑥)−(𝛽+1)𝑎𝑠𝑥 → ∞. 
 

The rest of the paper is organized as follows.  In Section 2, we derive some of the 

mathematical properties of the new family. Maximum likelihood estimation for the model 

parameters under uncensored data is addressed in Section 3. Two simulation studies are 

performed in Section 4 to assess the performance of the maximum likelihood estimations. 

In Section 5, potentiality of the proposed class is illustrated by means of two real data 

sets. Finally, Section 6 provides some concluding remarkes. 

2. Some statistical properties 

2.1 General properties 

The 𝑟𝑡ℎ moment of 𝑋, say 𝜇𝑟
′ , follows from (8) as  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑∞

𝑖,𝑗=0 𝑤𝑖,𝑗𝐸(𝑍𝛼𝛽(𝑖+1)+𝛼𝑗
𝑟 ).      (10) 

 

Henceforth, 𝑍𝜁 denotes the Exp-G distribution with power parameter 𝜁. For 𝜁 > 0, we 

have 𝐸(𝑍𝜁
𝑟) = 𝜁 ∫

∞

−∞
𝑥𝑟𝑔(𝑥; 𝜑)𝐺(𝑥; 𝜑)𝜁−1𝑑𝑥, which can be computed numerically in 

terms of the baseline quantile function (qf) 𝑄𝐺(𝑢; 𝜑) = 𝐺−1(𝑢; 𝜑) as 𝐸(𝑍𝜁
𝑛) =

𝜁 ∫
1

0
𝑄𝐺(𝑢; 𝜑)𝑛𝑢𝜁−1𝑑𝑢. The variance, skewness, and kurtosis measures can now be 

calculated using the well known relations. The 𝑛𝑡ℎ central moment of 𝑋, say 𝑀𝑛, is given 

by  
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 𝑀𝑛 = 𝐸(𝑋 − 𝜇1
′ )𝑛 = ∑

𝑖,𝑗=0

∞

∑𝑛
𝑟=0 𝑙𝑖,𝑗,𝑟𝐸(𝑌𝛼𝛽(𝑖+1)+𝛼𝑗

𝑟 ), 

where 𝑙𝑖,𝑗,𝑟 = 𝑤𝑖,𝑗(−1)𝑛−𝑟 (
𝑛
𝑟

) (𝜇𝑟
′ )𝑛−𝑟 . The 𝑠𝑡ℎ incomplete moment, say 𝜑𝑠(𝑡), of 𝑋 can 

be expressed from (8) as  

 𝜑𝑠(𝑡) = ∫
𝑡

−∞
𝑥𝑠𝑓(𝑥)𝑑𝑥 = ∑∞

𝑖,𝑗=0 𝑤𝑖,𝑗 ∫
𝑡

−∞
𝑥𝑠ℎ𝛼𝛽(𝑖+1)+𝛼𝑗(𝑥)𝑑𝑥.     (11) 

The mgf 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) of 𝑋. can be derived from equation (8) as 𝑀𝑋(𝑡) =
∑∞

𝑖,𝑗=0 𝑤𝑖,𝑗𝑀𝛼𝛽(𝑖+1)+𝛼𝑗(𝑡), where 𝑀𝜁(𝑡) is the mgf of 𝑍𝜁. Hence, 𝑀𝑋(𝑡) can be 

determined from the Exp-G generating function. 

2.2 Moments of the residual and reversed residual lifes 

The 𝑛𝑡ℎ moment of the residual life, say 𝑧𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛|𝑋 > 𝑡],𝑛 = 1,2,... , 

uniquely determines 𝐹(𝑥) (see Navarro et al., 1998). The 𝑛𝑡ℎ moment of the residual life 

of 𝑋 is given by 𝑧𝑛(𝑡) = [1 − 𝐹(𝑡)]−1 ∫
∞

𝑡
(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥). Therefore, 

 𝑧𝑛(𝑡) = [1 − 𝐹(𝑡)]−1 ∑∞
𝑖,𝑗=0 ∑

𝑟=0

𝑛

Υ𝑖,𝑗,𝑟 ∫
∞

𝑡
𝑥𝑟ℎ𝛼𝛽(𝑖+1)+𝛼𝑗(𝑥)𝑑𝑥,               (12) 

where Υ𝑖,𝑗,𝑟 = 𝑤𝑖,𝑗 (
𝑛
𝑟

) (−𝑡)𝑛−𝑟 . The 𝑛𝑡ℎ moment of the reversed residual life, say 

𝑀𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)𝑛|𝑋 ≤ 𝑡] for 𝑡 > 0 and 𝑛 = 1,2,... uniquely determines 𝐹(𝑥) 

(Navarro et al., 1998). We obtain 𝑍𝑛(𝑡) = [𝐹(𝑡)]−1 ∫
𝑡

0
(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥). Therefore, the 

𝑛𝑡ℎ moment of the reversed residual life of 𝑋 becomes 

 𝑍𝑛(𝑡) = [𝐹(𝑡)]−1 ∑∞
𝑖,𝑗,𝑘=0 ∑

𝑟=0

𝑛

Υ𝑖,𝑗,𝑟
∗ ∫

𝑡

0
𝑥𝑟ℎ𝛼𝛽(𝑖+1)+𝛼𝑗(𝑥)𝑑𝑥,                    (13) 

where Υ𝑖,𝑗,𝑟
∗  = 𝑤𝑖,𝑗(−1)𝑟 (

𝑛
𝑟

) 𝑡𝑛−𝑟 . The mean inactivity time (MIT) or mean waiting time 

(MWT) also called the mean reversed residual life function is given by 𝑍1(𝑡) = 𝐸[(𝑡 −
𝑋)|𝑋 ≤ 𝑡], and it represents the waiting time elapsed since the failure of an item on 

condition that this failure had occurred in (0, 𝑡). 

2.3 Entropies 

An entropy is a measure of variation or uncertainty of a random variable 𝑋. Two popular 

entropy measures are the Rényi and Shannon entropies (Shannon, 1948; Renyi, 1961). 

The Rényi entropy of a random variable with pdf 𝑓(𝑥) is defined as  

 𝐼𝑅(𝛾) =
1

1−𝛾
log[∫

∞

0
𝑓𝛾(𝑥)𝑑𝑥], 

for 𝛾 > 0 and 𝛾 ≠ 1. The Shannon entropy of a random variable 𝑋 is defined by 

𝐸{−log[𝑓(𝑋)]}. It is the special case of the Rényi entropy when 𝛾 ↑ 1. Direct calculation 

yields  

 𝐸{−log[𝑓(𝑋)]} = −log(𝛼𝛽) − 𝐸{log[𝑔(𝑋; 𝜙)]} + (1 −
𝛼𝛽)𝐸{log[𝐺(𝑋; 𝜙)]} 

 +(1 + 𝛽)𝐸{log[1 − 𝐺(𝑋; 𝜙)𝛼]} + 𝐸 {[
𝐺(𝑋;𝜙)𝛼

1−𝐺(𝑋;𝜙)𝛼]
𝛽

}. 

 

First we define and compute  

𝐴(𝑎1, 𝑎2; 𝛼, 𝛽) = ∫
1

0

𝑢𝑎1(1 − 𝑢𝛼)−𝑎2  exp [− (
𝑢𝛼

1 − 𝑢𝛼
)

𝛽

] 𝑑𝑢. 
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Using generalized binomial expansion and taylor expansion , we obtain  

𝐴(𝑎1, 𝑎2; 𝛼, 𝛽) = ∑

∞

𝑖,𝑗=0

(−1)𝑖+𝑗(𝑖!)−1(𝑎1 + 𝛼𝛽𝑖 + 𝛼𝑗 + 1)−1 (
−(𝑎2 + 𝛽𝑖)
𝑗

). 

Proposition 1 Let X be a random variable with pdf (5). Then  

 𝐸{log[𝐺(𝑋)]} = 𝛼𝛽
∂

∂𝑡
𝐴(𝛼𝛽 + 𝑡 − 1, 𝛽 + 1; 𝛼, 𝛽)|𝑡=0 

 𝐸{log[1 − 𝐺(𝑋)𝛼]} = 𝛼𝛽
∂

∂𝑡
𝐴(𝛼𝛽 − 1, 𝛽 + 1 − 𝑡; 𝛼, 𝛽)|𝑡=0 

 𝐸 {[
𝐺(𝑋)𝛼

1−𝐺(𝑋)𝛼]
𝛽

} = 𝛼𝛽𝐴(2𝛼𝛽 − 1,2𝛽 + 1; 𝛼, 𝛽) 

 

The simplest formula for the entropy of 𝑋 is given by  

 𝐸{−log[𝑓(𝑋)]} = −log(𝛼𝛽) − 𝐸{log[𝑔(𝑋; 𝜙)]} 

 +(1 − 𝛼𝛽)𝛼𝛽
∂

∂𝑡
𝐴(𝛼𝛽 + 𝑡 − 1, 𝛽 + 1; 𝛼, 𝛽)|𝑡=0 

 +(𝛽 + 1)𝛼𝛽
∂

∂𝑡
𝐴(𝛼𝛽 − 1, 𝛽 + 1 − 𝑡; 𝛼, 𝛽)|𝑡=0 

 +𝛼𝛽𝐴(2𝛼𝛽 − 1,2𝛽 + 1; 𝛼, 𝛽) 

 

After some algebraic developments, we obtain an alternative expression for  

 𝐼𝑅(𝛾)𝐼𝑅(𝛾) =
𝛾

1−𝛾
log(𝛼𝛽) +

1

1−𝛾
log[∑∞

𝑖,𝑗=0 𝑤𝑖,𝑗
∗ 𝐼(𝛼, 𝛽, 𝛾, 𝑖, 𝑗)] 

where 

 𝐼(𝛼, 𝛽, 𝛾, 𝑖, 𝑗) = ∫
∞

0
𝑔(𝑥)𝛾𝐺(𝑥)𝛾(𝛼𝛽−1)+𝛼𝛽𝑖+𝛼𝑗𝑑𝑥 

and  

 𝑤𝑖,𝑗
∗ =  (𝑖!)−1(−1)𝑖+𝑗𝛾𝑖 (

−[𝛾(𝛽 + 1) + 𝛽𝑖]
𝑗

). 

2.4 Order statistics 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from the F-G distribution. Let 𝑋𝑖:𝑛 denote the 

𝑖th order statistic. The pdf of 𝑋𝑖:𝑛 can be expressed as  

 𝑓𝑖:𝑛(𝑥) =  𝐾𝑓(𝑥) 𝐹𝑖−1(𝑥) {1 − 𝐹(𝑥)}𝑛−𝑖 =

𝐾 ∑𝑛−𝑖
𝑗=0 (−1)𝑗 (

𝑛 − 𝑖
𝑗

) 𝑓(𝑥) 𝐹(𝑥)𝑗+𝑖−1 

where 𝐾 = 𝑛!/[(𝑖 − 1)! (𝑛 − 𝑖)!]. Then, the density function of the 𝑋𝑖:𝑛 can be 

expressed as 

 𝑓𝑖:𝑛 = ∑∞
𝑟,𝑠=0 𝑡𝑖,𝑗ℎ𝛼𝛽(𝑟+1)+𝛼𝑠(𝑥)   (14) 

where  

 𝑡𝑖,𝑗 = 𝐾𝛼𝛽 ∑𝑛−𝑖
𝑗=0 ∑𝑖+𝑗−1

𝑘=0

(−1)𝑗+𝑘+𝑟+𝑠 (𝑘+1)𝑟

𝑟![𝛼𝛽(𝑟+1)+𝛼𝑠]
(

𝑛 − 𝑖
𝑗

) (
−𝛽(𝑟 + 1) − 1
𝑠

) 

With using this expansion we can easily obtain moments,generating function and 

incomplete moment of order statistics from any 𝐺. Equation (14) reveals that the pdf of 

the GOWG-G order statistic can be expressed as a linear combination of the Exp-G 

densities. Therefore, some statistical and mathematical properties of these order statistics 

can be obtained by using this result. Analogous to the ordinary moments we can get the 

L-moments but it can be estimated by the linear combinations of order statistics in (14). 

They exist as long the mean of the distribution exists, even if some higher moments may 



Mustafa Ç. Korkmaz , Morad Alizadeh , Haitham M. Yousof , Nadeem Shafique Butt 

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp541-556 546 

not exist, and are relatively robust to the effects of outliers. Based upon the moments in 

Equation (14), we can derive explicit expressions for the L-moments of 𝑋 as infinite 

weighted linear combinations of the means of suitable GOWG-G order statistics. They 

are linear functions of expected order statistics defined by  

 𝜆𝑟 =
1

𝑟
∑𝑟−1

𝑑=0 (−1)𝑑 (
𝑟 − 1
𝑑

) 𝐸(𝑋𝑟−𝑑:𝑟), 𝑟 ≥ 1. 

2.5 Probability weighted moments 

Generally, the probability weighted moments (PWMs) method can be used for estimating 

parameters of a distribution whose inverse form cannot be expressed explicitly. The 

PWMs are expectations of certain functions of a random variable and they can be defined 

for any random variable whose ordinary moments exist. They have low variance and no 

severe bias and can compare favorably with estimators obtained by the maximum 

likelihood method. The (𝑠, 𝑟)𝑡ℎ PWM of 𝑋 following the GOW-G family of distribution, 

say 𝜌𝑠,𝑟, is formally defined by  

 𝜌𝑠,𝑟 = 𝐸{𝑋𝑠𝐹(𝑋)𝑟} = ∫
∞

−∞
𝑥𝑠𝐹(𝑋)𝑟𝑓(𝑥)𝑑𝑥. 

From Equation (4) and (5) , we can write 

 𝑓(𝑥)𝐹(𝑥)𝑟 = ∑∞
𝑚,𝑙=0 Ω𝑚,𝑙ℎ𝛼𝛽(𝑚+1)+𝛼𝑙(𝑥), 

where 

 Ω𝑚,𝑙   = ∑𝑟
𝑘=0

𝛼𝛽(−1)𝑘+𝑚+𝑙 (𝑘+1)𝑚

𝑚![𝛼𝛽(𝑚+1)+𝛼𝑙]
(

−𝛽(𝑚 + 1) − 1
𝑙

). 

Finally, the (𝑠, 𝑟)𝑡ℎ PWMs of 𝑋 can be obtained from an infinite linear combination of 

Exp-G moments given by  

 𝜌𝑠,𝑟 = ∑∞
𝑘,𝑚=0 Ω𝑘,𝑚𝐸(𝑌𝛼𝛽(𝑚+1)+𝛼𝑙

𝑠 ). 

3. Special GOWG models 

In here, we obtain the new two extended models based on the new family. We also note 

that GOWG-G family reduces to odd Weibull-G (OW-G) family, introduced by 

Bourguignon et al. (2014), for 𝛼 = 1. 

3.1 The GOWG-normal 

We define the GOWG-normal (GOWG-N) distribution from (5) by taking 𝐺(𝑥; 𝜇, 𝜎) =

Φ (
𝑥−𝜇

𝜎
) and 𝑔(𝑥; 𝜇, 𝜎) = 𝜎−1𝜙 (

𝑥−𝜇

𝜎
) with 𝜉 = (𝜇, 𝜎), where 𝜙(⋅) and Φ(⋅) are the pdf 

and cdf of the standard normal distribution, respectively, where 𝑥 ∈ ℜ, 𝚯 =
(𝛼, 𝛽, 𝜇, 𝜎), 𝜇 ∈ ℜ and 𝛼, 𝛽, 𝜎 > 0. We plot this pdf and its hrf in Figure 1. From Figure 

1, we see that the pdf shapes of the GOWG-N are left skewed and bi-modal. Also, its hrf 

are increasing or firstly unimodal and then increasing.  
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Figure  1: Plots of the pdf and hrf of the GOWG-N distribution 

 
Figure  2: Plots of the pdf and hrf of the GOWG-W distribution 

3.2 The GOWG-Weibull 

Consider the cdf 𝐺(𝑥) = 1 − exp[−(𝜆𝑥)𝛾] of the Weibull distribution with scale 𝜆 > 0 

and shape 𝛾 > 0. The pdf of the GOWG-Weibull (GOWG-W) model (for 𝑥 > 0) follows 

from (5). Some plots of the GOWG-W pdf and hrf for selected parameter values are 

displayed in Figure 2. Figure 2 reveals that the GOWG-W density can be concave down, 

right skewed or bi-modal. The hrf of the XG-W model can be increasing, decreasing, 

bathtub or unimodal then bathtub. 

4. Estimation 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The MLEs enjoy 

desirable properties and can be used for constructing confidence intervals and also for 

test statistics. The normal approximation for these estimators in large samples can be 

easily handled either analytically or numerically. Here, we consider the estimation of the 

unknown parameters of the new family from complete samples only by maximum 

likelihood. Let 𝑥1, … , 𝑥𝑛 be a random sample from the GOWG-G distribution with a (𝑞 +
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2) × 1 parameter vector Θ =(𝛼, 𝛽, 𝜙) ú, where 𝜙 is a 𝑞 × 1 baseline parameter vector. 

The log-likelihood function for Φ is given by 

 ℓ(Θ) = 𝑛log𝛼 + 𝑛log𝛽 + ∑𝑛
𝑖=0 log𝑔(𝑥𝑖; 𝜙) + (𝛼𝛽 −

1) ∑𝑛
𝑖=0 log𝐺(𝑥𝑖; 𝜙) 

                         −(𝛽 + 1) ∑𝑛
𝑖=0 log𝑠𝑖 − ∑𝑛

𝑖=0 𝑝𝑖    (15) 

where 𝑠𝑖 = 1 − 𝐺(𝑥; 𝜙)𝛼and 𝑝𝑖 = [
𝐺(𝑥;𝜙)𝛼

𝑠𝑖
]

𝛽

. Equation of (15) can be maximized either 

directly by using the R (optim function), SAS (PROC NLMIXED) or Ox program (sub-

routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by 

differentiating (15). The score vector components, say 𝐔(Θ) =
∂ℓ

∂Θ
= (

∂ℓ

∂𝛼
,

∂ℓ

∂𝛽
,

∂ℓ

∂𝜙𝑟
)ú =

(𝑈𝑎, 𝑈𝑏 , 𝑈𝜙𝑟
)

T
, are given by 

 𝑈𝛼 =
𝑛

𝛼
+ 𝛽 ∑𝑛

𝑖=0 log𝐺(𝑥𝑖; 𝜙) − (𝛽 + 1) ∑𝑛
𝑖=0

𝑧𝑖

𝑠𝑖
− ∑𝑛

𝑖=0
𝑑𝑖

𝑝𝑖
, 

 𝑈𝛽 =
𝑛

𝛽
+ 𝛼 ∑𝑛

𝑖=0 log𝐺(𝑥𝑖; 𝜙) − ∑𝑛
𝑖=0 log𝑠𝑖 − ∑𝑛

𝑖=0 𝑞𝑖 

and (for 𝑟 = 1, . . . , 𝑞) 

 𝑈𝜙𝑟
= ∑𝑛

𝑖=0
𝑔𝑟

′ (𝑥𝑖;𝜙)

𝑔(𝑥𝑖;𝜙)
+ (𝛼𝛽 − 1) ∑𝑛

𝑖=0
𝐺𝑟

′(𝑥𝑖;𝜙)

𝐺(𝑥𝑖;𝜙)
− (𝛽 + 1) ∑𝑛

𝑖=0
𝑡𝑖

𝑠𝑖
− ∑𝑛

𝑖=0 𝑎𝑖. 

Where 

 𝑔𝑟
′ (𝑥𝑖; 𝜙) =

∂𝑔(𝑥𝑖;𝜙)

∂𝜙𝑟
, 𝐺𝑟

′(𝑥𝑖; 𝜙) =
∂𝐺(𝑥𝑖;𝜙)

∂𝜙𝑟
, 𝑧𝑖 = −

log𝐺(𝑥;𝜙)

𝐺(𝑥;𝜙)−𝛼 , 𝑡𝑖 = −𝛼
𝑔(𝑥;𝜙)

𝐺(𝑥;𝜙)1−𝛼, 

 𝑑𝑖 = −𝛽
𝑧𝑖[𝑠𝑖+𝐺(𝑥;𝜙)𝛼]

𝑠𝑖
2[

𝐺(𝑥;𝜙)𝛼

𝑠𝑖
]

1−𝛽 , 𝑞𝑖 =
log[

𝐺(𝑥;𝜙)𝛼

𝑠𝑖
]

[
𝐺(𝑥;𝜙)𝛼

𝑠𝑖
]

−𝛽 and𝑎𝑖 = −𝛽
[𝑠𝑖𝑧𝑖+𝑡𝑖𝐺(𝑥;𝜙)𝛼]

𝑠𝑖
2[

𝐺(𝑥;𝜙)𝛼

𝑠𝑖
]

1−𝛽 . 

 

Setting the nonlinear system of equations 𝑈𝛼 = 𝑈𝛽 = 0 and 𝑈𝜙𝑘
= 𝟎 and solving them 

simultaneously yields the MLEs Θ̂ = (�̂�, �̂�, �̂�ú)ú. To solve these equations, it is usually 

more convenient to use nonlinear optimization methods such as the quasi-Newton 

algorithm to numerically maximize ℓ(Θ). For interval estimation of the parameters, we 

can evaluate numerically the elements of the (𝑞 + 2) × (𝑞 + 2) observed information 

matrix 𝐽(Θ) = (−
∂2ℓ

∂𝜃𝑟𝜃𝑠
). Under standard regularity conditions when 𝑛 → ∞, the 

distribution of Θ̂ can be approximated by a multivariate normal 𝑁𝑝(0, 𝐽(Θ̂)−1) 

distribution to construct approximate confidence intervals for the parameters. Here, 𝐽(Θ̂) 

is the total observed information matrix evaluated at Θ̂. The method of the re-sampling 

bootstrap can be used for correcting the biases of the MLEs of the model parameters. 

Good interval estimates may also be obtained using the bootstrap percentile method. 

5. Simulation studies 

In this Section, we perform the two simulation studies by using the GOWG-N and 

GOWG-W distributions to see the performance of MLEs of these distribution. The 

random numbers generation is obtained by inverse of their cdfs. Inverse process and 

results of MLEs were obtained using optim-CG routine in the R programme.In the first 

simulation study, we obtain the graphical results. We generate 𝑁 = 1000 samples of size 

𝑛 = 20,25, … ,1000 from GOWG-N distribution with true parameters values 𝛼 = 5, 𝛽 =
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0.5, 𝜇 = 0 and 𝜎 = 1. In this simulation study, we empirically calculate the mean, 

standard deviations (sd), bias and mean square error (MSE) of the MLEs. The bias and 

MSE are calculated by (for ℎ = 𝛼, 𝛽, 𝜇, 𝜎) 

 𝐵𝑖𝑎𝑠ℎ̂ =
1

1000
∑1000

𝑖=1 (ℎ̂𝑖 − ℎ), 

and  

 𝑀𝑆𝐸ℎ̂ =
1

1000
∑1000

𝑖=1 (ℎ̂𝑖 − ℎ)
2
 

respectively. We give results of this simulation study in Figure 3. 

 

Figure  3: Simulation results of the special GOWG-N distribution 

 

 

In the second simulation study, we generate 1,000 samples of sizes 20,50 and 100 from 

selected GOWG-W distributions. For this simulation study, we obtain the empirical 

means and sd’s of the parameters.The results of this simulation study are reported in 

Table 1. 

 

From Figure 3, we observe that when the sample size increases, the empirical means 

approach to true parameter value. At the same time, the all biases and MSEs approach to 

0. The standard deviations decrease in all the cases, while sample size increases. Table 1 

shows that when the sample size increases, the empirical means approach to true 

parameter value and the sds decreases in all the cases as expected. 
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Table 1:  Empirical means and standard deviations (in parentheses) for the special 

GOWG-W distributions. 

Parameters 𝐧 = 𝟐𝟎 𝐧 = 𝟓𝟎 𝐧 = 𝟏𝟎𝟎 

𝛂, 𝛃, 𝛌, 𝛄 �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 

1,0.5,0.5,1 1.2829 0.4870 0.6737 1.5813 1.0661 0.5525 0.5375 1.2106 1.0543 0.5333 0.5037 1.1291 

 (0.5810) (0.4088) (0.4648) (0.8087) (0.4869) (0.3391) (0.2900) (0.4497) (0.4321) (0.2496) (0.2094) (0.3417) 

0.5,0.5,0.5,0.5 0.5298 0.5416 0.7052 0.6926 0.5039 0.5028 0.5477 0.6203 0.4987 0.5010 0.5424 0.5573 

 (0.2500) (0.3362) (0.3142) (0.3521) (0.1456) (0.1684) (0.2589) (0.2441) (0.1341) (0.1486) (0.2090) (0.1439) 

2,2,2,2 2.0867 1.9811 2.0195 2.1969 2.0237 1.9962 2.0035 2.0859 2.0059 1.9940 1.9991 2.0619 

 (0.3678) (0.3205) (0.1522) (0.4265) (0.2801) (0.1928) (0.1263) (0.2974) (0.3114) (0.1482) (0.1292) (0.2396) 

3,0.1,2,0.1 3.0476 0.0875 1.9928 0.1080 3.0079 0.1032 2.0040 0.1028 3.0040 0.1037 1.9977 0.0997 

 (0.2549) (0.1178) (0.0439) (0.0272) (0.2012) (0.0292) (0.0307) (0.0129) (0.2259) (0.0233) (0.0364) (0.0088) 

1,2,3,4 1.2094 1.9888 3.1249 4.0625 1.0836 2.0246 3.0462 4.0314 1.0704 1.9896 3.0443 4.0272 

 (0.3132) (0.2964) (0.1723) (0.5783) (0.2908) (0.2022) (0.1714) (0.3843) (0.2098) (0.1740) (0.1235) (0.3399) 

4,3,2,1 4.0056 3.0048 1.9574 1.0749 4.0060 3.0138 1.9756 1.0291 4.0068 3.0091 1.9891 1.0165 

 (0.1986) (0.1664) (0.1789) (0.1707) (0.0525) (0.0705) (0.1032) (0.0893) (0.0449) (0.0514) (0.0759) (0.0635) 

6.   Real data applications 

In this section, we illustrate the flexibility of the GOWG-N and GOWG-W models via 

two data sets. We compare these models with several extensions and generalizations of 

the normal and Weibull distributions in the literature. To determine the best model, we 

also computed the estimated log-likelihood values ℓ̂, Kolmogorov-Smirnov (KS), 

Cramervon Mises (𝑊∗) and Anderson-Darling (𝐴∗) goodness of-fit statistics for 

distribution models. We note that the statistics 𝑊∗ and 𝐴∗ are described in detail in Chen 

and Balakrishnan (1995). In general, it can be chosen as the best model which has the 

smaller the values of the K-S, 𝑊∗ and 𝐴∗ statistics and the larger the values of ℓ̂ and p-

values. All computations are performed by the maxLik routine in the R programme. The 

details are the followings. 

6.1 Windshield data set 

As first example, we consider the data studied by Murthy et al. (2004) representing the 

failure times for a particular windshield device. This data set has been analyzied by Brito 

et al. (2017) and Korkmaz et al. (2017). We compare the GOWG-N model with 

Gompertz-normal (Gom-N) model (Alizadeh, et al., 2017a), odd exponentiated half 

logistic normal (OEHL-N) model (Afify, et al., 2017e), odd Lindley normal (OL-N) 

model (da-Silva et al., 2017), odd log logistic normal (Braga et al., 2016) model and odd 

Weibull normal (OW-N) (Bourguignon et al., 2014) model. We give MLEs of 

parameters, ℓ̂, 𝐴∗,𝑊∗ and 𝐾𝑆 goodness-of-fits statistics in Table 2 for this data. Table 2 

shows that the GOWG-N model has the smallest values of the 𝐴∗ and𝐾𝑆 statistics, and 

has the biggest ℓ̂ value among the fitted models. Hence, it could be chosen as the best 

model.  
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Table  2:  MLEs of the model parameters for the windshield data, the 

corresponding standard errors (given in parentheses), 𝑨∗,𝑾∗ and 𝑲𝑺 

statistics for the applications models 

Model �̂� �̂� �̂� �̂� −�̂� 𝑨∗ 𝑾∗ 𝑲𝑺 

GOWG-N 1.3603 0.1410 3.0043 0.4152 124.1260 0.5471 0.1040 0.0819 

 (1.1740) (0.0739) (0.4694) (0.1978)     

Gom-N 0.0288 0.0768 0.7449 0.5327 127.1258 0.5586 0.0825 0.0849 

 (0.0.0145) (0.0139) (0.0001) (0.0001)     

EHOLL-N 0.0983 0.2114 3.9034 0.4847 125.6029 1.5225 0.3170 0.1183 

 (0.0173) (1.001E-07) (0.0001) (1.23E-6)     

OL-N  7.3048 5.2721 1.9995 129.8938 1.2223 0.2098 0.1194 

  (4.8310) (0.9752) (0.2310)     

OLL-N 0.4519  2.6262 0.6025 127.0619 0.6748 0.1246 0.0950 

 (0.2321)  (0.1267) (0.2179)     

OW-N  0.1321 3.1654 0.3635 124.1876 0.7466 0.1525 0.0940 

  (0.0663) (0.0874) (0.1106)     

 

The the plots of the fitted pdfs and cdfs for models are shown in Figure 4. Also, Figure 5 

displays the probability-probability (P-P) plots for the models. From these plots, we can 

conclude that the GOWG-N distribution is suitable to this data set. The GOWG-N model 

captures the data as bimodal. 

 

 

Figure  4: The fitted pdfs (left) and cdfs (right)for the first data set 

 



Mustafa Ç. Korkmaz , Morad Alizadeh , Haitham M. Yousof , Nadeem Shafique Butt 

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp541-556 552 

 
 

Figure 5: P-P plots for the first data set data 

6.2 Failure times data set 

The following data set represents the failure times (in minutes) for a sample of 15 

electronic components in an accelerated life test studied by Lawless (2003) and Mir 

Mostafaee et al. (2016). The data are: 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 

37.3, 46.3, 53.9, 59.8, 66.2. We compare the GOWG-W model with Gompertz-Weibull 

(Gom-W) model (Alizadeh, et al., 2017a), odd exponentiated half logistic Weibull 

(OEHL-W) model (Afify, et al., 2017e), Kumaraswamy Weibull (Kw-W) model 

(Cordeiro et al., 2010), odd log logistic Weibull (Cruz et al., 2016) model and odd 

Weibull Weibull (OW-W) (Bourguignon et al., 2014) model. We give MLEs of 

parameters, ℓ̂, 𝐴∗,𝑊∗ and 𝐾𝑆 goodness-of-fits statistics in Table 3 for this data. Table 3 

shows that the GOWG-W model has the smallest values of the 𝐴∗, 𝑊∗ and 𝐾𝑆 statistics, 

and has the biggest ℓ̂ value among the fitted models. Hence, it could be chosen as the best 

model. 

Table 3:  MLEs of the model parameters for the failure times data, the 

corresponding standard errors (given in parentheses), 𝑨∗,𝑾∗ and 𝑲𝑺 

statistics for the applications models 

Model �̂� �̂� �̂� �̂� −�̂� 𝑨∗ 𝑾∗ 𝑲𝑺 

GOWG-W 7.5748 0.0400 0.0346 4.2841 62.4511 0.1505 0.0230 0.0943 

 (2.5198) (0.0101) (0.0002) (0.0190)     

Gom-W 0.2385 0.1067 0.2158 0.8163 63.7255 0.1776 0.0273 0.1307 

 (0.6532) (0.2076) (0.4971) (0.4930)     

Kw-W 0.0834 0.9595 0.0156 9.5058 62.9480 0.2528 0.0497 0.1693 

 (0.0279) (0.3159) (0.0001) (0.0016)     

EHOLL-W 0.0776 1.0598 0.0153 9.1687 62.8915 0.2324 0.0396 0.1484 

 (0.0202) (0.0008) (0.0007) (0.0007)     

OLL-W 0.4382  0.0321 2.6259 63.4573 0.2235 0.0429 0.1606 

 (0.2465)  (0.0066) (1.2559)     

OW-W  0.2163 0.02259 4.4546 63.0820 0.3683 0.0781 0.1857 

  (0.0536) (0.0019) (0.0491)     

 

The the plots of the fitted pdfs and cdfs for models are shown in Figure 6. Also, Figure 7 

displays the P-P plots for the models. From these plots, we can conclude that the GOWG-
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W distribution is suitable to this data set. The GOWG-W model also captures the data as 

bimodal. 

Figure 6: The fitted pdfs (left) and cdfs (right)for the second data set 

 
Figure 7: P-P plots for the second data set data 
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7.   Conclusions 

In this work, we propose a new class of lifetime distributions calledthe generalized odd 

Weibull generatedfamily. It can provide better fits than some of the well known lifetime 

models and this fact represents a good characterization of this family. Some of its 

mathematical properties are derived. The maximum likelihood method is used for 

estimating the model parameters. We study the behaviour of the estimators by means of 

two Monte Carlo simulations. The importance of the family illustrated by means of two 

applications to real data sets. 
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