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Abstract 

In this paper, we propose a new class of continuous distributions called the exponentiated generalized Topp 

Leone-G family that extends the Topp Leone-G family introduced by Al-Shomrani et al. (2016). We derive 

explicit expressions for certain mathematical properties of the new family such as; ordinary and incomplete 

moments, generating functions, reliability analysis, Lorenz and Bonferroni curves, Rényi entropy, stress 

strength model, moment of residual and reversed residual life, order statistics, extreme values and 

characterizations. We discuss the maximum likelihood estimates and the observed information matrix for 

the model parameters. Two real data sets are used to illustrate the flexibility of the new family. 

Keywords: Exponentiated generalized-G family; Maximum likelihood estimation; 

Moments; Order statistics, Topp leone-G family. 

 

1. Introduction 

There has be an increase interest in constructing new generated families of univariate 

continuous distributions by adding additional shape parameter(s) to a baseline  model due 

to the desirable properties of the new models. Some of the well-known generated families 

are the following: exponentiated-G by Gupta et al. (1998), beta-G by Eugene et al.(2002), 

Kumaraswamy-G by Cordeiro and de Castro (2011), McDonald-G by Alexander et al. 

(2012), logistic-G by Torabi and Montazari (2014), Lomax-G by Cordeiro et al. (2014), 
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Kumaraswamy Marshall-Olkin-G by Alizadeh et al. (2015), odd-Burr generalized-G by 

Alizadeh et al. (2016), beta weibull-G by Yousof et al. (2017), among others. 

 

Let ( ; )g x   and ( ; )G x   denote the probability density function (pdf) and cumulative 

distribution function (cdf) of a baseline model with parameter vector  . Al-Shomrani et 

al. (2016) introduced the Topp Leone-G (TL-G) family of distributions with cdf and pdf 

given by 

           
   ( ; ) ( ; ) 2 ( ; ) , 0, ,TL GF x G x G x x R

 
   − = −                                           (1) 

            
   

1 1
( ; ) 2 ( ; ) ( ; ) ( ; ) 2 ( ; ) , ,TL Gf x g x G x G x G x x R

 
     

− −

− = −                       (2) 

where, ( ; ) 1 ( ; ).G x G x = −   

 

Furthermore, Cordeiro et al. (2013) introduced the exponentiated generalized-G (EG-G) 

family of distributions with cdf and pdf given below  

           
 ( ; ) 1 [1 ( ; )] , , , 0, ,

b
a

EG GF x G x a b x R − = − −                                                  (3) 

          
 

1
1( ; ) ( ; )[1 ( ; )] 1 [1 ( ; )] , ,

b
a a

EG Gf x ab g x G x G x x R   
−

−

− = − − −                      (4) 

where, 0a   andare two additional shape parameters.  0b    

 

The goal of this paper is to propose a new family of continuous distributions called the 

exponentiated generalized Topp Leone-G family (EGTL-G for short) in the gensis of TL-

G and EG-G families of distributions. Some statistical properties of the new family are 

studied. The parameters of the proposed family are estimated via the method of 

maximum likelihood. Two real data sets are used to show the effectiveness of the new 

family.  

 

The rest of this paper is as follows. In Section 2, we define the EGTL-G and obtain some 

associated reliability functions. In Section 3, the asymptotic of the EGTL-G are 

investigated. The expansion of EGTL -G is discussed in Section 4. In Section 5, some 

special models corresponding to EGTL-G are introduced. In Section 6, some statistical 

properties of the EGTL-G are discussed. Characterizations for the new family are 

presented in Section 7. In Section 8, the maximum likelihood estimates and the observed 

information matrix are obtained for the parameters of EGTL-G. A simulation study is 

conducted in Section 9. In Section 10, two applications for EGTL-G are presented. Some 

concluding remarks are given in the last Section. 

2. The Exponentiated Generalized Topp Leone-G Family 

In this section, we define the exponentiated generalized Topp leone-G family of 

distributions and discuss some of the reliability functions.  

 

The cdf of the EGTL-G family can be obtained by using ( ; )TL GF x −  
and ( ; )TL Gf x −  given 

in (1) and (2) as baseline cdf and pdf in (3) as 
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  ( ) 1 1 ( ; )

b
a

EGTL G TLF x F x − = − −

 

                   
( )21 1 1 ( ; ) , , , 0, ,

b
a

G x a b x R


 
  = − − −      

                              (5) 

Hence forward ( ) ( ; ), ( ) 1 ( ; ), ( ) ( ; ).G x G x G x G x g x g x  = = − =  The pdf corresponding to (5) is 
   

          
( )

1
1

2 2( ) 2 ( ) ( ) 1 ( ) 1 1 ( )
a

EGTL Gf x ab g x G x G x G x



−

−

−
  = − − −    

 

                               
( )

1

21 1 1 ( ) , ,

b
a

G x x R


−

   − − −     
                                                (6) 

The EGTL-G has the following sub-families: 

*If 1 = , then the EGTL-G class reduces to the EG-G family. 

*If 1,a b= =  then we have the TL-G family. 

The reliability function ( )R x , hazard function ( )h x , inverse hazard function ( )x  and 

cumulative hazard function ( )H x  for the EGTL-G family are given, respectively, by 

           
( )2( ) 1 1 1 1 ( ) , ,

b
a

R x G x x R
  = − − − −       

                                                       (7) 

           

( ) ( )

( )

1
1

1
2 2 2

2

2 ( ) ( ) 1 ( ) 1 1 ( ) 1 1 1 ( )

( ) ,

1 1 1 1 ( )

b
a a

b
a

ab g x G x G x G x G x

h x

G x

 





−
−

−      − − − − − −          =
  − − − −    

                      (8) 

           

( )

( )

1
1

2 2

2

2 ( ) ( ) 1 ( ) 1 1 ( )

( ) ,

1 1 1 ( )

a

a

ab g x G x G x G x

x

G x








−
−   − − −    =

 − − −
  

                                          (9) 

and 

           

( )2( ) ln 1 1 1 1 ( ) , .

b
a

H x G x x R
   = −  − − − −        

                                           (10) 

 

If the random variable X  has pdf (6), then quantile function (qf) of ,X say 
1( ) ( )Q F −= , can be obtained by inverting (5). Let 1(.) (.)GG Q− =  denote the qf of ,G

then if (0,1),U then 

           

( )
1

1
1 11 1 1 1 .

a
b

uX G


−
   = − − − −     

                                                               (11) 

3. Asymptotics  

The asymptotics of cdf, pdf and hrf of EGTL-G as x→−  are given by 

                       ( ) 2 ( )b b bF x a G x 

 as x→− ; 

                       
1( ) 2 ( ) ( )b b bf x b a g x G x  −

 as x→− ; 
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1( ) 2 ( ) ( )b b bh x b a g x G x  −

 as x→− . 

The asymptotics of equations cfd, pdf and hrf of EGTL-G as x→  are given by 

                       
21 ( ) ( )a aF x b G x−  as x→ ; 

                       
2 1( ) 2 ( ) ( )a af x ab g x G x −

 as x→ ; 

                       

2 ( )
( )

( )

ag x
h x

G x  

as x→ . 

These results show the effect of the parameters on the tails of EGTL-G. 

4. Expansion for Density and Distribution Functions 

We can expand the EGTL-G family as mixture representation of the exponentiated-G 

family of distributions. For 1   and b  a positive real non-integer, we have the series 

representation 

           

1

0

( 1) ( )
(1 )

! ( )

j
b j

j

b
u u

j b j


−

=

− 
− =

 −
                                                                            (12) 

 

Therefore using (12) in (5), the cdf of EGTL-G family can be expressed as follows: 

           

2 1
1

, , 0 0

( ) ( , , , ) ( ) ,
h

m

EGTL G

j i h m

F x j i h m G x
 +

+

−

= =

=                                                               (13) 

where,
( 1) 2 ( ) ( ( )) ( ( 1)) (2( 1))

( , , , ) .
! ! ! ( 2) ( ) ( ( ) ) ( ( 1) ) (2( 1) )

j i h m ab b a j i i h
j i h m

j i h m b j a j i i i h h m

 




+ + +−   +  +  +
=

 +  −  + −  + −  + −
 

 

Likewise, we can express the pdf of EGTL-G family using (11) in (6)  

           

2 1

1

, , 0 0

( ) ( , , , ) ( )
h

EGTL G h

j i h m

f x j i h m S x
 +

− +

= =

=                                                                 (14) 

where, 1( ) ( 1) ( ) ( )m
mS x m g x G x+ = +  is the exponentiated-G distribution with power parameter 

1m+ . 

5. The EGTL-G Sub-Models 

In this section, we introduce three special models of the EGTL-G family. 

5.1 The EGTL-Weibull (EGTLW) Model 

Suppose the cdf and pdf of the Weibull distribution are the following ( )( ) 1 xG x e
−= − and 

1 ( )( ) , 0, , 0xg x x e x
    − −=   . respectively. Then, the cdf and pdf of EGTL-

Weibull (EGTLW) distribution are, respectively, given by  

            
1

1
1 2( ) 2( ) 2( )( ) 2 1 1 1

a

x x xf x ab x e e e
   

     
−

−
− − − −   = − − −

   
 

                        

( )
1

2( )1 1 1 , 0,

b
a

xe x
 



−

−
   

 − − −      
 

and 
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( )2( )( ) 1 1 1 , 0.

b
a

xF x e x
 

−
   

= − − −        
 

For 1 = , the EGTLW distribution is reduced to the EGTL-exponential (EGTLE) 

distribution. For 1 = , we have the EG-Weibull (EGW) distribution. Moreover, 

1a b= = , then we obtain the TL-Weibull (TLW) distribution. For 1a b = = = , the 

EGTLW distribution is reduced to the Exp-Weibull (EW) distribution. The plots of the 

density and hazard functions are displayed in Figure 1. The density introduces left, right 

skewed and symmetrical and reversed J shapes. In the other hand, the shape of the hazard 

function is increasing, decreasing, constant, bathtub and upside down bathtub. 

 

 
 

 

Figure 1: Plots of the EGTLW pdf and hrf for selected values of parameters. 

5.2 The EGTL-Lomax (EGTLLx) Model 

Consider the cdf and pdf of the lomax distribution ( ) 1 (1 )G x x  −= − +  and 
( 1)( ) (1 ) , 0, , 0g x x x   − += +    respectively. Then, the cdf and pdf of EGTL-lomax 

(EGTLLx) are, respectively, given by  

           
 

1
1

(2 1) 2 2( ) 2 (1 ) 1 (1 ) 1 1 (1 )
a

f x ab x x x
 

      
−

−
− + − −   = + − + − − +         

                        
1

21 1 1 (1 ) , 0,

b
a

x x




−

− 
  − − − +   

 
 

and 

           
 2( ) 1 1 1 (1 ) , 0.

b
a

F x x x


 − 
 = − − − +   

   
For 1 = , the EGTLLx distribution become the EG-lomax (EGLx) distribution. 

Moreover, For 1a b= = , then the EGTLLx distribution is reduced to the TL-lomax 

(TLLx) distribution. For 1a b = = = , the EGTLLx distribution is reduced to the Exp-

Lomax (ELx) distribution. The plots of the density and hazard functions are given in 

Figure 2. The shape of the density is skeweed,

 

reversed J shapes and near symmetric, 

while the hazard function introduces increasing, decreasing, and upside down bathtub 

shapes. 
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Figure 2: Plots of the EGTLLx pdf and hrf for selected values of parameters. 

 

5.3 The EGTL-Quasi Lindley (EGTLQL) Model 

The cdf and pdf of the quasi-Lindley distribution are ( ) 1 1
1

xx
G x e

p

 − 
= − + 

+ 
 and 

( )
( ) , 0, 0, 1,

1

xp x
g x e x p

p

 
−+

=    −
+

 respectively. Then, the cdf and pdf of EGTL- 

quasi-Lindley (EGTLQL) are, respectively, given by  

            

1
2

2 22 ( )
( ) 1 1 1

1 1 1

x xab p x x x
f x e e

p p p



    
−

− −
     +

= + − +     
+ + +      

 

      

1
1

2 2

2 21 1 1 1 1 1 1 , 0,
1 1

b
a a

x xx x
e e x

p p

 

  

−
−

− −

              
 − − + − − − +           + +                 

 

and  

           

2

2( ) 1 1 1 1 , 0.
1

b
a

xx
F x e x

p



 −

      
= − − − +     +         

 

For p = , the EGTLQL distribution is reduced to the EGTL-Lindley (EGTLL) 

distribution. For 1 = , we get the EG-quasi-Lindley (EGQL) distribution. Moreover, for 

1a b= = , the EGTLQL distribution becomes the TL-quasi-Lindley (TLQL) distribution. 

The plots of the density and hazard function are given in Figure 4. The shape of density is 

approximately left skewed, reversed J shapes, right skewed and symmetric, while the 

hazard function is increasing, decreasing, constant and bathtub shapes. 
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Figure 3: Plots of the EGTLQL pdf and hrf for selected values of parameters. 

6. Statistical Properties 

In this section, we study some statistical properties of the EGTL-G family such as: 

ordinary and incomplete moments, generating function, Lorenz and Bonferroni curves, 

Rényi entropy, stress strength model, moment of residual and reversed residual life, order 

statistics and extreme values. 

6.1. Moments and Generating Functions 

Suppose X is a random variable with EGTL-G distribution, then the ordinary moments, 

say ,r  is given by 

           

( ) ( )r r

r EGTL GE X x f x dx


−

−

 = =   

                

2 1

1

, , 0 0

( , , , ) ( )
h

r

m

j i h m

j i h m x S x dx
 +

+

= = −

=     

                

2 1

,

, , 0 0

( , , , ) ,
h

r m

j i h m

j i h m 
 +



= =

=  
                                            

(15) 

where, ( , , , ) ( 1) ( , , , )j i h m m j i h m  = +  and , ( ) ( )r m
r m x g x G x dx



−

= 
 

is the probability 

weighted moment of the baseline distribution. For integer values of n  and
 

1 ( ),E X = =  one can find the nth  central moment of the EGTL-G distribution, say 

,n  to be 

          
( )1

n

n E X = −  

               

( )2 1
1

,

0 , , 0 0

( 1) ( 1)
( , , , ) ,

! ( 1)

n rn rn h

r m

r j i h m

n
j i h m

r n r


 

−− +


= = =

−  +
=

 − +
           (16) 

From (16), the measures of skewness and kurtosis of the EGTL-G distribution can be 

obtained as  
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( )

3

3 2 1 1

3 2
2

2 1

3
Skewn

2
)e (s ,s X

   

 

   − +
=

 −
                                                                    (17) 

and 

           

2 4

4 1 3 1 3 1

2

2 1

4
Kur

6 3
( ) ,tosis X

     

 

     − + −
=

 −
                                                         (18) 

respectively. Figure (1) shows the behavior of skewness and kurtosis of EGTL-Lx 

distribution. 

 

 

 

 

Figure 4: The skewness and kurtosis of EGTLLx distribution. 

 

The moment and probability generating functions, denoted as ( ),xM t  and [ ]( )xM t

respectively of the EGTL-G family can be obtained based on (16) to be 

           

2 1

,

0 0 0 0 0

( ) ( ) ( , , , ) .
!

rh
tx

x r m

j i h r m

t
M t E e j i h m

r
 

    +


= = = = =

= =                                           (19) 

and 

           

2 1

[ ] ,

0 0 0 0 0

(ln )
( ) ( ) ( , , , ) .

!

rh
x

x r m

j i h r m

t
M t E t j i h m

r
 

    +


= = = = =

= =                                    (20) 

6.2. Incomplete Moments 

Suppose X is a random variable with EGTL-G distribution, then the thr incomplete 

moment, denoted by ( ),rm w  is 

          

( ) ( )

w

r

r EGTL Gm w x f x dx−

−

=   

                      

2 1

,

, , 0 0

( , , , )
h

r m

j i h m

j i h m 
 +



= =

=                                                                       (21) 

where, , ( ) ( ) .

w

r m
r m x g x G x dx

−

= 
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6.3. Lorenz and Bonferroni Curves 

The Lorenz and Bonferroni curves have been used in different areas such as economics, 

reliability, demography, insurance and medicine. The Lorenz ( )FL x and Bonferroni

( )( )B F x  curves are defined respectively as follows: 

   

( )
0 0

( )1 1
( ) ( ) , ( ) ( ) .

( ) ( ) ( ) ( )

x x

F
F

L x
L x t f t dt B F x t f t dt

E x F x E x F x
= = =   

Therefore, these quantities for the EGTL-G family are obtained from 

           

2 1

1,

, , 0 0

2 1

1,

, , 0 0

( , , , )

( ) ,

( , , , )

h

m

j i h m

F h

m

j i h m

j i h m

L x

j i h m

 

 

 +


= =

 +


= =

=

 

 
                                                                    (22) 

and 

           

( )

2 1

1,

, , 0 0

2 1

1,

, , 0 0

( , , , )

( ) .

( ) ( , , , )

h

m

j i h m

h

EGTL G m

j i h m

j i h m

B F x

F x j i h m

 

 

 +


= =

 +


−

= =

=

 

 
                                                 (23) 

6.4. Rényi Entropy  

The concept of entropy has been applied in different fields such as statistics, queuing 

theory and reliability estimation. The Rényi entropy is defined as 

           
 

1
( ) log ( )

1
RI I 


=

−
, where ( ) ( ) , 0I f x dx =   and 0  . 

From (6), we have 

           
, , ,

0 0 0 0

( ) ( ) ( ) ,m

j i m

j i m

I g x G x dx 
   

= = = = −

=   

where, , , ,

( 1) ( ) ( ) 2
(2 ) ( 1) .j i m

j i m

b a j i
ab

j i m

       
  + + + − + − + − +    

= −     
    

  

Consequently, the Rényi entropy for the EGTL-G family is given by 

           

, , ,

0 0 0 0

1
( ) log ( ) ( ) .

1

m

R j i m

j i m

I g x G x dx 


   

= = = = −

  
=  

−   
                                       (24) 

6.5. Stress Strength Model 

The stress strength model is a common criterion used in different applications in 

engineering and physics. Let 1X  and 2X  be two independent random variables with 

EGTL-G ( 1 1 1, , ,a b   ) and EGTL-G ( 2 2 2, , ,a b   ) distributions. Then, the stress strength 

model is given by 

           
2 1 1 1 1 1 2 2 2 2

0

Pr( ) ( , , ; ) ( , , ; )R X X f a b F a b dx   


=  =   

               
, , , ,

0 0 0 0 0

,j s w h

j s w h

    

= = = = =

=                                                                              (25) 
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where,

 

1
1 1 2 1 1 2 1 2

, , , ,
2 1 1 2 1 2

( 1) ( 1) ( 1) ( 1) ( ( 1)) ( 1) ( ( 1) )
.

! ! ! ! ! ( 1) ( ) ( ( 1) ) ( 1) ( ( 1) )

j s w h

j s w h

a h b b a a j s w

j s w h b j b a s a j w s w h

  

 

+ + + + −− +  +  +  +  +  + +
 =

 − +  −  + −  − +  + + −  

6.6. Moment of Residual and Reversed Residual Life 

The moment of residual and reversed residual life uniquely determine ( )F x . The thn

moment of the residual life, say ( ),nm t  of a random variable X  is  

           

1
( ) ( ) ( ) ( ) , 1,2,...

( )

n n

n

t

m t E X t X t x t dF x n
F t



 = −  = − =
   . 

Consequently, ( )nm t
 
for the EGTL-G family is given by 

           , , , 0 0

( 1) ( 1) ( , , , )
( ) ( ) .

! ( 1) ( )

n w n wn
w h

n

j i h w t

t n j i h m
m t x G x dx

w n w F t


− −

= =

−  +
=

 − +
                             (26) 

The thn  moment of the reversed residual life, say ( ),nM t  of a random variable X  is  

           0

1
( ) ( ) ( ) ( ) , 1,2,...

( )

t

n n

nM t E t X X t t x dF x n
F t

 = −  = − =
   . 

Subsequently, ( )nM t
 
for the EGTL-G family is  

           , , , 0 0 0

( 1) ( 1) ( , , , )
( ) ( ) .

! ( 1) ( )

tn w n wn
w h

n

j i h w

t n j i h m
M t x G x dx

w n w F t

− −

= =

−  +
=

 − +
                            (27) 

6.7. Order Statistics 

Order statistics play an important role in probability and statistics. Let 1, 2: :,...n n n nX X X 
 

be the ordered sample from a continuous population with pdf ( )f x and cdf ( )F x . The 

pdf of :k nX , the thk order statistic is given by  

           

 
:

1

0

1
( ) ( 1) ( ) ( ) .

( , 1)k n

n k
k ww

X

w

n k
f x f x F x

wk n k

−
+ −

=

− 
= −  

− +  


 
Based on (5) and (6), we arrive at 

           
:

2 1

1

0 , , 0 0

( ) ( , , , , ) ,
k n

n k h

X

w j i h

f x w j i h S
−  +

+

= = =

=                                                                (28) 

where,

 

( ) 1) ( 1) 1 ( 1) 1 2 1( 1) 2
( , , , , ) .

( , 1) ( 1)

w j i h n k b k w a j i hab
w j i h

w j gi hk n k






+ + + + − + − + − + − +     −
=      

− + +      
 

Moreover, the thr  moment of thk  order statistic for EGTL-G family is given by 

           
( )

2 1

: ,

0 , , 0 0

( , , , , ) ,
n k h

r

k n r

w j i h

E x w j i h 
−  +



= = =

=                                                              (29) 

where, ( , , , , ) ( 1) ( , , , , ).w j i h w j i h  = +  

6.8 Extreme values 

If 1( ... )nX X X n= + +  denotes the mean of a random sample from (5), then by the usual 

central limit theorem ( ( )) ( )n X E X Var X−
 

approaches the standard normal 

distribution as n→  under suitable conditions. Sometimes one would be interested in 

the asymptotes of the extreme values 1( ,..., )nn maM x X X= and 1min( ,..., ).n nXm X= . 
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First, Suppose that G  belongs to the max domain of attraction of the Gumbel extreme 

value distribution. Then by Leadbetter et al. (1987), there must exist a strictly positive 

function, say ( )h t , such that 

           

( ) ( ) ( )1 ( ) 1 ( ) ( )
lim lim

1 ( ) ( )

x

t t

G t x h t x h t g t x h t
e

G t g t

−

→ →

− + − +
= =

−
, 

for every x . But 

           

( ) ( ) ( ) 2
1 ( ) 1 ( ) ( )

lim lim
1 ( ) ( )

ax

t t

F t x h t x h t gf t x h t
e

F t f t

−

→ →

− + − +
= =

−
, 

for every x . It follows from Leadbetter et al. (1987) that F  belongs to the max 

domain of attraction of the Gumbel extreme value distribution with 

           
( )lim exp[ exp( 2 )],n n n

t
P a M b x ax

→
 −  = − −   

for some suitable norming constants 0na   and nb . Second, suppose that G  belongs to 

the max domain of attraction of the Fréchet extreme value distribution. Then, there must 

exist a 0   such that 

           

( ) ( ) ( )1 ( ) 1 ( ) ( )
lim lim ,

1 ( ) ( )t t

G t x h t x h t g t x h t
x

G t g t



→ →

− + − +
= =

−  
for every x . But 

           

( ) ( ) ( ) 2
1 ( ) 1 ( ) ( )

lim lim
1 ( ) ( )

a

t t

F t x h t x h t gf t x h t
x

F t f t



→ →

− + − +
= =

−
, 

for every 0x  . So, it follows from Leadbetter et al. (1987) that F  belongs to the max 

domain of attraction of the Fréchet extreme value distribution with  

           
( ) 2lim exp[ ],a

n n n
t

P a M b x x 

→
 −  = −   

for some suitable norming constants 0na   and nb . Third, suppose that G  belongs to the 

max domain of attraction of the Weibull extreme value distribution. Then by Leadbetter 

et al. (1987), there must exist a 0c   such that 

           

1 ( ) ( )
lim lim ,

( ) ( )

c

t t

G tx xg tx
x

G t g t→ →

−
= =  

for every 0x  . But 

           

( ) ( )
lim lim ,

( ) ( )

b c

t t

F tx x F t x
x

F t f t



→ →
= =

 
for every 0x  . Similarly it follows that F  belongs to the max domain of attraction of 

the Weibull extreme value distribution with  

           
( ) 2lim exp[ ( ) ],a

n n n
t

P c M d x x 

→
 −  = − −   

 

for some suitable norming constants 0nc   and nd . We conclude that F belongs to the 

same min domain of attraction as that of G as the same argument applies to min domain 

of attraction. That is, F  belongs to the same min domain of attraction as that of .G  

7. Characterizations 

Characterizations of distributions is an important research area which has recently 

attracted the attention of many researchers. This section deals with various 
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characterizations of the EGTL-G distribution. These characterizations are based on: (i) a 

simple relationship between two truncated moments; (ii) the hazard function; (iii) the 

reverse (or reversed) hazard function and (iv) conditional expectation of a function of the 

random variable. It should be mentioned that for characterization (i) the cdf is not 

required to have a closed form. We present our characterizations (i)-(iv)in four 

subsections. 

7.1 Characterizations based on two truncated moments 

In this subsection we present characterizations of the EGTL-G distribution in terms of a 

simple relationship between two truncated moments. The first characterization result 

employs a theorem due to Glanzel (1987), see Theorem 1 below. Note that the result 

holds also when the interval H  is not closed. Moreover, as mentioned above, it could be 

also applied when the cdf F  does not have a closed form. As Shown in Glanzel (1990), 

this characterization is stable in the sense of weak convergence. 

 

Theorem 1. 

Let ( , , )F  be a given probability space and let [ , ]H d e=  be an interval for some d e  (

,d e= − =  might as well be allowed). Let :X H→  be a continuous random variable 

with the distribution function F  and let 1q  and 2q  be two real functions defined on H  

such that 

           2 1( ) ( ) ( ), ,E q X X x E q X X x x x H    =       

is defined with some real function .  Assume that 1 2
1 2, ( ), ( )q q C H C H−   and F  is twice 

continuously differentiable and strictly monotone function on the set .H  Finally, assume 

that the equation 1 2q q =  has no real solution in the interior of .H  Then F  is uniquely 

determined by the functions 1 2,q q  and ,   particularly 

           

( )
1 2

( )
( ) exp ( ) ,

( ) ( ) ( )

x

a

u
F x C s u du

u q u q u






= −

−  

where the function s  is a solution of the differential equation 1

1 2

q
s

q q






 =

−
 and C  is the 

normalization constant, such that 1.
H

dF =
 

 

Proposition 7.1. 

Let :X →  be a continuous random variable and let 

( )
1

2
1 1 1 1 ( )

b
a

q G x


−
   

= − − −  
   

 and ( )2
2 1( ) ( ) 1 1 ( )q x q x G x

 
= − − 

 
 for .x  The random variable X  has 

pdf (6) if and only if the function   defined in Theorem 1 has the form 

           
( )2( ) 1 1 ( ) , .

1

b
x G x x

b



  = − − 
  +  

Proof. 

Let X  be a random variable with pdf (6), then  
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( ) ( )2

11 ( ) ( ) 1 1 ( ) , ,
a

F x E q X X x b G x x
  −  = − −     

 

and 

           
( ) ( )

1
2

21 ( ) ( ) 1 1 ( ) , ,
1

ab
F x E q X X x G x x

b


+

  −  = − −     +
 

and finally  

           
( )2

1 2 1

1
( ) ( ) ( ) ( ) 1 1 ( ) 0 f .

1
orx q x q x q x G x x

b



  − = − − −  
  +  

Conversely, if   is given as above, then 

           
( )

1
2

1

2
1 2

2 ( ) ( ) 1 ( )( ) ( )
( ) ,

( ) ( ) ( ) 1 1 ( )

b g x G x G xx q x
s x x

x q x q x G x









−

 −   = = 
− − −

 

and hence 

           

( )2( ) ln 1 1 ( ) , .
b

s x G x x


−  = − −     
 

Now, in view of Theorem 1, X  has density (6). 

 

Corollary 7.1. 

Let :X →  be a continuous random variable and let 1( )q x  be as in Proposition 7.1 the 

pdf of X  is (6) if and only if there exist functions 2 ( )q x  and   defined in Theorem 1. 

satisfying the differential equation 

           
( )

1
2

1

2
1 2

2 ( ) ( ) 1 ( )( ) ( )
.

( ) ( ) ( ) 1 1 ( )

b g x G x G xx q x
x

x q x q x G x









−

 −  = 
− − −

 

The general solution of the differential equation in Corollary 7.1 is 

   
( ) ( )

1
1

2 2 1

1 2( ) 1 1 ( ) 2 ( ) ( ) 1 ( ) ( ) ( ) ,x G x b g x G x G x q x q x D
 

 
−

−
−   = − − − − +

      
 

where D  is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 7.1 with 0.D =  However, it should be also noted that 

there are triplets 1 2( , , )q q   satisfying the conditions of Theorem 1. 

 

 

 

7.2 Characterization based on hazard function 

It is known that the hazard function, ,Fh
 
of a twice differentiable distribution function, 

,F  satisfies the first order differential equation 

           

( )( )
( ).

( ) ( )

F
F

F

h xf x
h x

f x h x


= −

 
For many univariate continuous distributions, this is the only characterization available in 

terms of the hazard function. The following proposition establishes a characterization of 
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the EGTL-G distribution, for 1,b =  in terms of the hazard function, which is not of the 

above trivial form. 

 

Proposition 7.2. 

Let :X →  be a continuous random variable. For 1,b =  the pdf of X  is (6) if and only 

if its hazard function ( )Fh x  satisfies the differential equation 

           

( )

( )

1
2

2

( ) 1 ( )( )
( ) ( ) 2 ( ) ,

( ) 1 1 ( )
F F

G x G xg x d
h x h x a g x

g x dx G x






− −  
 − =  

− −  

 

with the boundary condition lim ( ) 0.x Fh x→ =  

 

Proof. If X  has pdf (6), for 1,b =  then clearly the above differential equation holds. 

Now, if the differential equation holds, then 

           

 
( )

( )

1
2

1

1
2

( ) 1 ( )
( ) ( ) 2 ,

1 1 ( )
F

G x G xd d
q x h x a

dx dx G x






−

−

 − 
=  

− −  

 

or 

           

( )

( )

1
2

2

( ) 1 ( )
( ) 2 ( ) ,

1 1 ( )
F

G x G x
h x a g x

G x






− − 
=  

− −  

 

which is the hazard function of the EGTL-G distribution for 1.b =  

7.3 Characterization in terms of the reverse (or reversed) hazard function 

The reverse hazard function, ,F  of a twice differentiable distribution function, ,F  is 

defined as 

           

support o
( )

,
)

.
(

fF

f x
x F

F x
 = 

 
 

Proposition 7.3 

Let :X →  be a continuous random variable. The pdf of X  is (6) if and only if its 

reverse hazard function F  satisfies the differential equation 

( ) ( )

( )

1
1

2 2

2

( ) 1 ( ) 1 1 ( )
( )

( ) ( ) 2 ( ) .
( )

1 1 1 ( )

a

F F a

G x G x G x
g x d

x x a g x
g x dx

G x

 


  

−
−  − − −      − =  

  − − −
      

Proof. 

If X  has pdf (6), then clearly the above differential equation holds. Now, if the 

differential equation holds, then 

           

( ) 
( ) ( )

( )

1
1

2 2

1

2

( ) 1 ( ) 1 1 ( )

( ) ( ) 2 ,

1 1 1 ( )

a

F a

G x G x G x
d d

g x x ab
dx dx

G x

 


 

−
−

−

  − − −    =  
  − − −
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 or 

           

( ) ( )

( )

1
1

2 2

2

( ) 1 ( ) 1 1 ( )

( ) 2 ( ) ,

1 1 1 ( )

a

F a

G x G x G x

x ab g x

G x

 


 

−
−  − − −    =  

  − − −
      

which is the reverse hazard function of the EGTL-G distribution. 

7.4 Characterizations Based on Conditional Expectation 

The following propositions have already appeared in Hamedani (2013), so we will just 

state them here which can be used to characterize the EGTL-G distribution. 

 

Proposition 7.4.1 

Let : ( , )X a b→  be a continuous random variable with cdf .F  Let ( )x  be a 

differentiable function on ( , )a b  with lim ( ) 1.
x a

x+→
=  Then for 1,   

           
( ) ( ), ( , ),E X X x x x a b   =    

if and only if 

           
( )

1
1,

( ) 1 ( ) ( , ).x F x x a b
−

= − 
 

 

Proposition 7.4.2 

Let : ( , )X a b→  be a continuous random variable with cdf .F  Let 1( )x  be a 

differentiable function on ( , )a b  with 1lim ( ) 1.
x b

x+→
=  Then for 1 1, 

 

           1 1 1( ) ( ), ( , ),E X X x x x a b   =    
implies 

           
( ) 1

1
1,

1( ) ( ) ( , ).x F x x a b
−

= 
 

 

 

 

 

 

Remarks 7.4 

(a) For ( )2( ) 1 1 ( ) , 1,
1

a
x G x b

a


 = − − = =

+
 and ( , ) ,a b =  Proposition 7.4.1 provides a 

characterization of the EGTL-G distribution. (b) For ( )2
1 1( ) 1 1 1 ( ) ,

1

a
b

X G x
b


 

 
= − − − =  + 

 

and ( , ) ,a b =  Proposition 6.4.2 provides a characterization of the EGTL-G distribution. 

(c) Of course there are other suitable functions than the ones we mentioned above, which 

are chosen for simplicity. 

8. Estimation of Parameters 
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In this section, we describe the maximum likelihood estimates (MLEs) for the model 

parameters of the EGTL-G family. Letbe an independent random sample  1 2, ,..., nx x x  

from EGTL-G family with set of parameters ( , , , )Ta b   =  , then the corresponding log-

likelihood function is given by 

           
  ( ) ( )

1 1

log(2) log( ) log( ) log( ) log ( , ) log ( , )
n n

i i

i i

n a b g x G x  
= =

= + + + + +   

               
( ) ( )

1 1

( 1) log( ) ( 1) log 1 ( 1) log 1 1 ,
n n

a

i i i

i i

a b    
= =

 + − + − − + − − −
  

                 (30) 

where, 21 ( , ) .i iG x = −   

The components of the score vector , , ,
a b  

    
 =  

    
are  

           

( )
( )

( )1 1

1 log(1 )
log 1 ( 1) ,

1 1

a
n n

i i

i a
i i

i

n
b

a a

 





 


= =

 − −  
= + − − −  

 − −  

                                  (31) 

           
 

1

log 1 (1 ) ,
n

a

i

i

n

b b


=


= + − −


                                                                           (32) 

           

( )
( )

1 1

log
log ( 1)

1

n n
i i

i

i i i

n
a





 


  = =

 
= + − −  

 − 
   

                   

( ) ( )

( )

1

1

1 log
( 1) ,

1 1

a
n

i i i

a
i

i

a b

 



  



−

=

 −
 + −
 − −
 

                                                             (33) 

and (for 1,..., )r q=  

           1 1 1

( , ) ( , ) ( , ) ( , )
2( 1)

( , ) ( , )

n n n
r i r i r i r i

i i ir r i r i i

g x G x G x G x

g x G x

   


   = = =

       
= − + −     

      
    

                   

1

1

( , ) ( , )
2 ( 1)

1

n
r i r i i

i i

G x G x
a





  




−

=

 
− −  

− 
  

                   

( )

( )

1
1

1

( , ) ( , ) 1
2 ( 1) ,

1 1

a
n

r i r i i i

a
i

i

G x G x
a b

 



   




−
−

=

  − 
+ −  

− −  

                                      (34) 

where, ( , ) ( , )r i r i rg x g x   =   and ( , ) ( , ) .r i r i rG x G x   =    

The MLEs, say ˆ ˆ ˆˆ ˆ( , , , )a b   = of ( , , , )Ta b   = can be obtained by solving the system of 

nonlinear equations (31) through (34). These equations cannot be solved analytically and 

it needed iterative techniques such as Newton-Raphson algorithm. 

For the purposes of interval estimation and testing hypotheses for the vector parameters

( , , , )Ta b   = , we derive the ( 3) ( 3)q q+  + observed information matrix  ( ) wvJ J =

(for , , , , rw v a b  = ( to be 
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( )

r

r

r

r r r r r

aa ab a a

ba bb b b

a b

a b

J J J J

J J J J
J

J J J J

J J J J

 

 

   

     

 
 
 

 =  
 
 
   

whose elements are given in Appendix A. 

9. Simulation Study 

In this section, the maximum likelihood estimators for the parameters of EGTLLx density 

function have been assessed by simulating: ( , , , , ) (0.5,2,1.5,2,1.5).a b   =  To verify 

the validity of the maximum likelihood estimators, the bias and the mean square error of 

MLE have been used. For example, for ( , , , , ) (0.5,2,1.5,2,1.5),a b   = 1000r =  times, 

samples of 30,80,...,280n =  of EGTLLx (0.5,2,1.5,2,1.5) have been simulated. To 

estimate the numerical values of the maximum likelihood estimators, the optim function ( 

in the stat package) and Nelder-Mead method in R software have been used. If 

( , , , , ),a b   = for any simulation by n  volume and 1,2,..., ,i r=  the maximum 

likelihood estimates are obtained as ˆˆ ˆ ˆ ˆ ˆ( , , , , ).i i i i i ia b   =  

To examine the performance of the MLEs for the EGTLLx distribution, we perform a 

simulation study as follows: 

1. Generate r  samples of size n  from pdf of EGTL-Lx. 

2. Compute the MLEs for the r  samples, say ˆˆ ˆ ˆ ˆ( , , , , ).i i i i ia b   for 1,2,..., 1000.i r= =  

3. Compute the standard errors of the MLEs for r  samples, say ˆ ˆ ˆ ˆˆ( , , , , )
ii i

a b
s s s s s
  

for 

1,2,..., .i r=  

4. Compute the biases and mean squared errors given by 

           
( )ˆ

1

1 ˆ) ,(
r

i i

i

Bias
r

n


 
=

= −  

and 

           
( )

2

ˆ

1

1 ˆ( ,)
r

i i

i

MS n
r

E


 
=

= −
 

for ( , , , , ).a b   =  

We repeat these steps for 1000r =  and 30,80,...,n n=  ( n
is different in each issue) with 

different values of ( , , , , ),a b    so computing ˆ ˆBias ( ),MSE ( )n n
 

. The results of the 

empirical study were conducted in Table 1. It is observed, from Table 1, reveals how the 

biases, mean squared errors vary with respect to .n  As expected, the Biases and MSEs of 

the estimated parameters converge to zero while n  growing. 

Table 1: Biases and MSEs for the MLEs of the parameters of the EGTLLx distribution. 

Groups 
Initial 

Values 

Bias 

and 

MSE 

Sample sizes 

30n =  80n =  130n =  180n =  230n =  280n =  

I 0.5 =  
Bias 0.588282 0.463250 0.253137 0.196429 0.196585 0.197232 

MSE 0.750044 0.379374 0.113175 0.050236 0.040844 0.039935 
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2 =  
Bias 0.318604 0.189122 0.050938 0.008020 0.001305 -0.000105 

MSE 0.220227 0.082685 0.017103 0.002727 0.000477 0.000021 

1.5 =  
Bias -0.612847 -0.310104 -0.092810 -0.012416 0.001024 0.002189 

MSE 0.827126 0.231947 0.054623 0.011199 0.002129 0.000541 

2a =  
Bias 0.281671 0.162439 0.041882 0.003197 -0.000315 -0.000269 

MSE 0.162758 0.052194 0.011112 0.001623 0.000255 0.000025 

1.5b =  
Bias -0.316271 -0.190701 -0.028233 0.000994 0.000403 0.000534 

MSE 0.340274 0.127963 0.023873 0.004133 0.000654 0.000139 

II 

1.5 =  
Bias -0.10172 -0.076118 -0.004988 0.045532 0.047782 0.033494 

MSE 1.12876 0.659925 0.464142 0.320768 0.330558 0.259729 

2 =  
Bias -0.00935 0.058297 0.002742 -0.006870 0.038627 -0.003233 

MSE 0.74986 0.407614 0.405201 0.387705 0.348475 0.355531 

1.5 =  
Bias 0.09847 0.184462 0.198048 0.222955 0.236501 0.274003 

MSE 1.30764 0.728996 0.518753 0.359886 0.352336 0.290443 

2a =  
Bias 0.13525 0.064509 0.031263 0.039512 0.049806 0.034119 

MSE 0.51769 0.255398 0.206680 0.182507 0.166377 0.170890 

1.5b =  
Bias 0.03310 -0.084521 -0.038048 -0.091139 -0.116460 -0.102970 

MSE 1.15560 0.832793 0.746394 0.772271 0.758404 0.758816 

III 

1.5 =  
Bias 0.29654 0.43626 0.41452 0.38514 0.335512 0.361434 

MSE 1.20911 0.75775 0.48009 0.36574 0.301555 0.295165 

2 =  
Bias 0.37086 0.39527 0.38307 0.37004 0.375806 0.389026 

MSE 0.76247 0.70747 0.52296 0.46196 0.373752 0.345372 

1.5 =  
Bias -0.09290 -0.03078 0.03592 0.05610 0.025042 -0.004890 

MSE 1.18423 0.55924 0.27154 0.21421 0.156952 0.137428 

2a =  
Bias 0.23905 0.31546 0.34941 0.33782 0.305165 0.312768 

MSE 0.48537 0.30378 0.25217 0.23322 0.183310 0.181520 

3b =  
Bias -0.45371 -0.74413 -0.82078 -0.71431 -0.622516 -0.648932 

MSE 1.61957 1.45819 1.47566 1.14898 0.885651 0.903368 

10. Applications 

In this section, we provide two application to real data to illustrate the applicability of the 

EGTL-G family. We focus on the EGTLLx distribution introduced in Subsection 6.2. We 

have used data from Nigm et al. (2003) and is about ordered failure of components. The 

data is given as follows: 0.0009, 0.004, 0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 

0.1091, 0.1252, 0.1404, 0.1498, 0.175, 0.2031, 0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 

0.6143. 

The second data set consists of 63 observations of the strengths of 1.5 cm glass fibers 

which obtained by workers at the UK National Physical Laboratory. The data are: 0.55, 

0.74, 0.77, 0.81, 0.84,0.93, 1.04, 1.11,1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 

1.42, 1.48, 1.48, 1.49,1.49, 1.50, 1.50, 1.51, 1.52, 1.53,1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 

1.61, 1.61, 1.61, 1.61,1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68,1.68, 1.69, 1.70, 

1.70, 1.73, 1.76, 1.76,1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. This data 

recently study by Reyad and Othman (2017). 

The MLEs are computed using Quasi-Newton Code for Bound Constrained Optimization 

(L-BFGS-B) and the log-likelihood function evaluated. The goodness-of-fit measures, 

Anderson-Darling (A∗), Cramér–von Mises (W∗) are computed. The lower the values of 

these criteria, the better the fit. The value for the Kolmogorov Smirnov (KS) statistic and 

its p-value are also provided. 

We compare the EGTLLx distribution with those of the Lomax (Lx), beta Lomax (BLx) 

(Lemonte and Cordeiro, 2013), exponentiated Lomax (ELx) (El-Bassiouny et al., 2015) 

Kumaraswamy Lomax (KwLx) (Lemonte and Cordeiro, 2013), Topp-Leone Gamma 

(TLGa) (Al-Shomrani et al., 2016), McDonald Lomax (McLx) (Lemonte and Cordeiro, 

2013), Topp-Leone Lomax (TLLx) (Al-Shomrani et al., 2016) and Topp-Leone 
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exponential (TLE) (Al-Shomrani et al., 2016), The MLEs and some statistics of the 

models for the first data set and second data set are presented in Tables 2, 3, 4 and 5 

respectively 

Table 2: The MLEs for the first data set 

Model 
Estimates with standard error in parenthesis 

â  b̂  ̂  ̂  ̂  

EGTLLx 
6.7320 

(4.7607) 

0.1514 

(0.1278) 

4.5746 

(1.7120) 

0.2128 

(0.2473) 

5.8854 

(1.7751) 

BLx 
0.8075 

(0.2211) 

10.8542 

(139.0261) 

--- 

--- 

26.0677 

(148.8267) 

12.1996 

(153.1953) 

TLGa 
0.8603 

(0.5353) 

14.8296 

(45.0796) 

0.0108 

(0.0235) 

3.3653 

(7.8418) 

7.9758 

(12.9886) 

McLx 
0.6596 

(0.2054) 

16.9164 

(133.4944) 

2.9236 

(5.7999) 

9.6612 

(136.6751) 

10.5497 

(165.7145) 

KwLx 
46.4929 

(127.0901) 

3.9739 

(12.8003) 

0.7426 

(0.4514) 

0.4890 

(1.9023) 

--- 

--- 

Elx 
8.1186 

(24.9598) 

44.1626 

(132.4419) 

0.7986 

(0.2249) 

--- 

--- 

--- 

--- 

TLE 
0.7925 

(0.2208) 

2.6644 

(0.8240) 

--- 

--- 

--- 

--- 

--- 

--- 

TLLx 
13.7262  

(54.6940) 

37.0005 

(145.1542) 

0.7958823 

(0.2233255) 

--- 

--- 

--- 

--- 

Lx 27.4680 

(250.6248) 

171.2326 

(155.7832) 

--- 

--- 

--- 

--- 

--- 

--- 

Table 3: Some statistics for the models fitted to the first data set. 

Model 
Goodness of fit criteria 

A* W* KS P-value AIC BIC 

EGTLLx 0.1424 0.0234 0.0916 0.9902 24.5612 19.5825 

BLx 0.2206 0.0389 0.1229 0.8876 25.6264 21.6435 

TLGa 0.1430 0.0247 0.0957 0.9809 24.5897 19.5911 

McLx 0.1428 0.0235 0.0963 0.9852 24.5547 19.5760 

KwLx 0.2111 0.0373 0.1234 0.8844 25.6777 21.6947 

ELx 0.2213 0.0391 0.1241 0.8806 28.9779 26.9864 

TLE 0.2124 0.0375 0.1225 0.8899 27.6581 24.6709 

TLLx 0.2178 0.0385 0.1234 0.8847 27.6144 24.6272 

Lx 0.2184 0.0386 0.1099 0.9065 28.9779 26.9864 

Table 4: The MLEs for the second data set 

Model 
Estimates with standard error in parenthesis 

â  b̂  ̂  ̂  ̂  

EGTLLx 
5.7322 

(25.8626) 

0.4767 

(0.4310) 

1.8787 

(2.1570) 

0.4327 

(0.2677) 

5.4623 

(4.5758) 

BLx 
17.8478 

(3.4499) 

40.1913 

(60.2638) 

--- 

--- 

77.5816 

(222.1545) 

19.3027 

(41.0907) 
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TLGa 
28.7175 

(20.1487) 

0.4032 

(0.2492) 

1.4064 

(1.8410) 

13.4036 

(21.2440) 

4.3984 

(7.9034) 

McLx 
9.0850 

(2.4677) 

116.5477 

(15.6533) 

22.4273 

(4.0311) 

45.2586 

(11.6442) 

41.2484 

(10.14361) 

KwLx 
27.1531 

(67.0525) 

46.1506 

(125.0250) 

9.0710 

(2.3638) 

91.7567 

(89.5981) 

--- 

--- 

ELx 
43.2618 

(53.4628) 

116.1829 

(139.3477) 

32.7701 

(10.3498) 

--- 

--- 

--- 

--- 

TLE 
31.3565 

(9.5283) 

1.3057 

(0.1190) 

--- 

--- 

--- 

--- 

--- 

--- 

TLLx 
80.2159 

(19.8572) 

106.8310 

(156.5348) 

32.46991 

(9.9803) 

--- 

--- 

--- 

--- 

Lx 
211.2298 

(322.7742) 

140.5679 

(214.5268) 

--- 

--- 

--- 

--- 

--- 

--- 

Table 5: Some statistics for the models fitted to the second data set. 

Model 

Goodness of fit criteria 

A* W* KS 
P-

value 

AIC BIC 

EGTLLx 1.0842 0.1951 0.1453 0.1381 39.0461 49.7618 

BLx 3.1526 0.5748 0.2165 0.0054 56.2913 56.9810 

TLGa 1.2965 0.2353 0.1617 0.0740 40.4989 51.2146 

McLx 1.4040 0.2558 0.1700 0.05238 41.0887 51.8043 

KwLx 1.7966 0.3281 0.1731 0.0457 42.7185 51.2911 

Elx 4.3439 0.7969 0.2285 0.0027 69.4747 75.9041 

TLE 4.2870 0.7861 0.2295 0.0027 66.7669 71.0532 

TLLx 4.3256 0.7935 0.23121 0.0024 69.1780 75.6074 

Lx 3.1354 0.5717 0.4179 0.0000 182.0878 186.3741 

 

The values in Tables 3 and 5 indicate that the EGTLLx model has the lowest values for 

A*, W*, KS and largest P-values among all fitted models (for the two real data sets). So, 

the EGTLLx models could be chosen as the best models. The estimated pdfs and cdfs  

plots are displayed in Figures (5) and (6). It is clear from Figures (5) and (6) that the new 

EGTLLx distribution provides the best fits to both data sets.  
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Figure 5: Estimated pdfs and cdfs plots of the EGTL-Lx distribution for data set 1 

 

 

 
 

Figure 6: Estimated pdfs and cdfs plots of the EGTL-Lx distribution for data set 2 

 

Moreover, The likelihood ratio (LR) statistic can be used to check if the EGTLLx 

distribution is strictly “superior” to the ELx distribution for a given data sets. The test of 

0 1H a b = = = =  versus 1 0H H=  is not true is equivalent to compare the EGTLLx and 

ELx distributions, where ˆˆ ˆ ˆ ˆ, , , anda b    are the MLEs under 1H  and ˆ ˆ,   are the MLEs 

under 0 ,H  is asymptotically follows chi-square distribution with 3 degrees of freedom. 

The LR statistics for testing the hypotheses 0 :H  ELx against 1 :H  EGTLLx for data sets 

1 and 2 are 81.5 and 34.42, respectively, and all yield 0. 0001.< 0Pvalues  Thus, we can 

reject the null hypotheses in all cases in favor of the EGTLLx distribution at any usual 

significance level; that is, the EGTLLx model is significantly better than the ELx 

distribution.  

11. Conclusions 

We propose a new class of distributions, called the exponentiated generalized Topp 

Leone-G (EGTL-G) family by using the TL-G family as a baseline model in the EG-G 

class of distributions. We investigate the statistical properties of the suggested family 
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such as ordinary and incomplete moments, generating functions, Lorenz and Bonferroni 

curves, Rényi of entropy, stress strength model, moment of residual and reversed residual 

lifes, order statistics and extreme values. The method of maximum likelihood is applied 

to estimate the model parameters and the observed information matrix is discussed. Two 

real data sets are used to show that some models corresponding to the EGTL-G family 

can give better fit than similar models generated by well-known families. 
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Appendix A 

The elements of the observed information matrix are given below 
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