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Abstract 

Based on a simple relationship between two truncated moments and certain functions of the 𝑛th order 

statistic, we characterize some extended classes of distributions recently proposed in the statistical 

literature, videlicet Beta-G, Gamma-G, Kumaraswamy-G and McDonald-G. Several properties of these 

extended classes and some special cases are discussed. We compare these classes in terms of goodness-of-

fit criteria using some baseline distributions by means of two real data sets.   
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1.   Introduction 

The recent literature has suggested several ways of extending well-known distributions. 

One of the earliest is the class of distributions generated by a standard beta distribution 

pionnered by Eugene et al. (2002). The more recent ones are: the class of distributions 

generated by Kumaraswamy (1980)’s distribution defined by Cordeiro and de Castro 

(2011), and the class of distributions generated by McDonald (1984)’s generalized beta 

distribution introduced by Alexander et al. (2012). Generalized distributions usually 

provide flexible framework for modeling a wide range of data sets, that is, these models 

are very useful for fitting a wide spectrum of real world lifetime data in biology, 

medicine, engineering, economics and other fields. 
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Alexander et al. (2012) proposed the  generalized beta-generated (GBG) family of 

distributions (also called McDonald generalized, McG) with the probability density 

function (pdf) given by  

𝑓𝑀𝑐𝐺−𝐾(𝑥; 𝑎, 𝑏, 𝑐, 𝜆) =
𝑐

𝐵(𝑎,𝑏)
𝑘(𝑥)𝐾(𝑥)𝑎𝑐−1[1 − 𝐾(𝑥)𝑐]𝑏−1, 𝑥 ≥ 0,  (1) 

and cumulative distribution function (cdf) in the form 

𝐹𝑀𝑐𝐺−𝐾(𝑥; 𝑎, 𝑏, 𝑐, 𝜆) =
1

𝐵(𝑎,𝑏)
∫

𝐾(𝑥)𝑐

0
𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤,    𝑥 > 0,  (2) 

where  𝑎 > 0 , 𝑏 > 0   and 𝑐 > 0  are shape parameters, 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)/Γ(𝑎 + 𝑏) is 

the beta function, Γ(⋅) is the gamma function and 𝐾(𝑥) is a cdf with support in any 

subinterval of ℝ and corresponding pdf 𝑘(𝑥) = 𝑑𝐾(𝑥)/𝑑𝑥, which depends on a 

parameter vector 𝜆. Hereafter, we shall refer to model (2) as the  McDonald generalized-

K (denoted by the prefix “McG-K” for short) family since the McDonald density function 

is a basic exemplar when 𝐾(𝑥) = 𝑥 for 𝑥 ∈ (0,1). The family of distributions (2) 

includes two important special classes: the  beta generalized (BG) (Eugene et al., 2002) 

for 𝑐 = 1, and the  Kumaraswamy generalized (KwG) (Cordeiro and de Castro, 2011) for 

𝑎 = 1. It follows from (2) that the McG-K family with baseline cdf 𝐾(𝑥) is the BG 

distribution with baseline cdf 𝐾(𝑥)𝑐. This simple transformation may facilitate the 

derivation of some of its structural properties. 

 

For example, the pdf and cdf of the  McDonald Normal (McN) distribution are given by  

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝜇, 𝜎) =
𝑐

𝜎𝐵(𝑎, 𝑏)
𝜙 (

𝑥 − 𝜇

𝜎
) [Φ (

𝑥 − 𝜇

𝜎
)]

𝑎𝑐−1

{1 − [Φ (
𝑥 − 𝜇

𝜎
)]

𝑐

}
𝑏−1

, 𝑥 ∈ ℝ, 

and  

𝐹(𝑥; 𝑎, 𝑏, 𝑐, 𝜇, 𝜎) =
1

𝐵(𝑎,𝑏)
∫

[Φ(
𝑥−𝜇

𝜎
)]

𝑐

0
𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡,    𝑥 ∈ ℝ,  (3) 

respectively, where  𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝜎 > 0  and  𝜇 ∈ ℝ are parameters and 𝜙(𝑥) 

and Φ(𝑥)  are the pdf and cdf of the normal 𝑁(0,1) distribution. 

 

For example, the pdf and cdf of the Kumaraswamy-inverse Weibull (Kw-IW) distribution 

are given by 

𝑓(𝑥; 𝑎, 𝑏, 𝛼, 𝛽) =
𝑎 𝑏 𝛼 𝛽

𝑥𝛽+1 exp (−
𝑎𝛼

𝑥𝛽) [1 − exp (−
𝑎𝛼

𝑥𝛽)]
𝑏−1

,      𝑥 > 0, (4) 

and 

𝐹(𝑥; 𝑎, 𝑏, 𝛼, 𝛽) = 1 − [1 − exp (−
𝑎𝛼

𝑥𝛽)]
𝑏

  ,      𝑥 ≥ 0,   (5) 

respectively, where 𝑎 > 0, 𝑏 > 0, 𝛼 > 0 and 𝛽 > 0 are parameters. 

 

Cordeiro et al. (2012) proposed the  beta extended Weibull (BEW) family of distributions 

on the basis of the extended class of Weibull distributions studied by Nadarajah and Kotz 

(2005). The pdf of the BEW family takes the form  

𝑓𝐵𝐸𝑊(𝑥; 𝑎, 𝑏, 𝛼, 𝜏) =
𝛼

𝐵(𝑎,𝑏)
𝑢(𝑥)e−𝛼 𝑏 𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]

𝑎−1
, 𝑥 > 0  (6) 

 

The corresponding cdf is given by 

𝐹𝐵𝐸𝑊(𝑥; 𝑎, 𝑏, 𝛼, 𝜏) =
1

𝐵(𝑎,𝑏)
∫

1−e−𝛼𝑈(𝑥)

0
𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤, 𝑥 ≥ 0  (7) 

where  𝑎 > 0 and 𝑏 > 0 are shape parameters, 𝛼 > 0 is a scale parameter and 𝜏 denotes 

the vector of unknown parameters in 𝑈(𝑥). We assume that 𝑈(𝑥) is a monotonically 
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increasing function of  𝑥 with 𝑈(𝑥) ≥ 0,  lim𝑥→0+𝑈(𝑥) = 0 and the derivative  𝑢(𝑥) =
d𝑈(𝑥)/d𝑥 belongs to the interval (0, ∞). A characterization of the BEW family is that its 

hazard rate function (hrf) can be bathtub shaped, monotonically increasing or decreasing 

and upside-down bathtub depending basically on the parameter values. This family 

contains as special models several well-known distributions. Some useful distributions in 

this family are presented in Cordeiro et al. (2012). 

 

The generator proposed by Zografos and Balakrishnan (2009) and Ristic′ and 

Balakrishnan (2012), called the gamma-G (“GG” for short) family defined from any 

baseline cdf 𝐺(𝑥;    𝜏 ), 𝑥 ∈ ℝ, considers an extra shape parameter 𝑎 > 0. They defined 

the GG family by the pdf and cdf  

𝑓𝐺𝐺(𝑥;    𝜏 , 𝛿) =
𝑔(𝑥;   𝜏 )

Γ(𝛿)
 {−log[1 − 𝐺(𝑥;    𝜏 )]}𝛿−1    (8) 

and 𝐹𝐺𝐺(𝑥;    𝜏 , 𝑎) =
1

Γ(𝛿)
 ∫

−log[1−𝐺(𝑥;   𝜏 )]

0
 𝑡𝛿−1 e−𝑡 d𝑡 =  𝛾1(𝛿, −log[1 − 𝐺(𝑥;    𝜏 )]), 

respectively, where 𝑔(𝑥;    𝜏 )  =  d𝐺(𝑥;    𝜏 )/d𝑥, 𝛾(𝛿, 𝑧) = ∫
𝑧

0
𝑡𝛿−1 e−𝑡𝑑𝑡 and 

𝛾1(𝛿, 𝑧) = 𝛾(𝛿, 𝑧)/Γ(𝛿) are the incomplete gamma function and the incomplete gamma 

function ratio, respectively. Each new GG distribution can be generated from a specified 

G distribution. 

 

Nascimento et al. (2014) introduced a new class of distributions called the  gamma 

extended Weibull (GEW) family based on the work of Zografos and Balakrishnan (2009). 

The pdf and cdf of this family are defined by 

𝑓𝐺𝐸𝑊(𝑥; 𝛿, 𝛼, 𝜉) =
𝛼𝛿

Γ(𝛿)
𝑣(𝑥; 𝜉) 𝑉(𝑥; 𝜉)𝛿−1 e−𝛼𝑉(𝑥;𝜉), 𝑥 > 0   (9) 

and 

𝐹𝐺𝐸𝑊(𝑥; 𝛿, 𝛼, 𝜉) =
1

Γ(𝛿)
∫

𝛼𝑉(𝑥;𝜉)

0
𝑡𝛿−1e−𝑡𝑑𝑡, 𝑥 ≥ 0    (10) 

respectively, where 𝛿 > 0 is a shape parameter, 𝛼 > 0 is a scale parameter and  𝜉  is a 

vector of unknown parameters in 𝑉(𝑥).   We assume that 𝑉(𝑥) ≥ 0 is monotonically 

increasing in  𝑥  with  lim𝑥→0+𝑉(𝑥) = 0, lim𝑥→∞𝑉(𝑥) = ∞  and the derivative  𝑣(𝑥) =
𝑑𝑉(𝑥)/𝑑𝑥 is defined in (0, ∞). The proposed family includes several well-known models 

as special cases such as the exponential, Pareto, Gomertz, Weibull and modified Weibull 

distributions, among others. 

 

The distribution proposed by Mead (2014), and called the generalized beta extended 

Pareto (GBEP) distribution, has pdf and cdf given by (for 𝑥 > 𝑑)  

𝑓(𝑥) = 𝑓(𝑥; 𝑎, 𝑏, 𝜆, 𝑑, 𝑘, 𝑐) =
𝑐 𝜆 𝑘 𝑑𝑘 𝑥−(𝑘+1)

𝐵(𝑎,𝑏)
[1 − (𝑑/𝑥)𝑘]𝜆𝑎𝑐−1 × {1 −

[1 − (𝑑/𝑥)𝑘]𝜆𝑐}
𝑏−1

 and 𝐹(𝑥) = 𝐹(𝑥; 𝑎, 𝑏, 𝜆, 𝑑, 𝑘, 𝑐) = 𝐵(𝑎, 𝑏)−1 ∫
[1−(𝑑/𝑥)]𝜆𝑐

0
𝑤𝑎−1(1 −

𝑤)𝑏−1d𝑤, respectively, where 𝑎, 𝑏, 𝜆, 𝑑, 𝑘, 𝑐 and 𝑐 are all positive parameters. 

 

Proposition 1.1 Let  𝑋: 𝛺 → (𝑑, ∞) be a continuous random variable and let  

ℎ(𝑥) = {1 − [1 − (𝑑/𝑥)𝑘]𝜆𝑐}
1−𝑏

and𝑔(𝑥) = ℎ(𝑥)[1 − (𝑑/𝑥)𝑘]𝜆𝑎𝑐 

for  𝑥 ∈ (𝑑, ∞). The 𝑝𝑑𝑓 of 𝑋 is that of GBEP if and only if the function 𝜂 defined in 

Theorem 2.1 (of Section 2) has the form 𝜂(𝑥) =
1

2
{1 + [1 − (𝑑/𝑥)𝑘]𝜆𝑎𝑐}, 𝑥 > 𝑑.  
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Hashimoto  et al. (2014) introduced a distribution called the Poisson Birnbaun-Saunders 

(PBS) model with long-term survivors and pdf and cdf (for 𝑥 > 0) given by  

𝑓(𝑥) = 𝑓(𝑥; 𝛼, 𝜆, 𝜑) =
𝜑 𝑥−3/2 (𝑥 + 𝜆)

2 𝛼 √2𝜋𝜆 (1 − e−𝜑)
 

× exp {−
1

2𝛼2
(

𝑥

𝜆
+

𝜆

𝑥
− 2) − 𝜑 Φ [

1

𝛼
(√

𝑥

𝜆
− √

𝜆

𝑥
)]}, 

and 

𝐹(𝑥) = 𝐹(𝑥; 𝛼, 𝜆, 𝜑) = 1 − 2 𝛼 √2𝜋 𝜆  {exp (−𝜑 Φ [
1

𝛼
(√

𝑥

𝜆
− √

𝜆

𝑥
)]) − e−𝜑}, 

respectively, where 𝛼, 𝜆 and 𝜑 are all positive parameters and Φ is the standard normal 

cdf. 

 

Proposition 1.2  Let 𝑋: 𝛺 → (0, ∞) be a continuous random variable and let  

ℎ(𝑥) = 𝑥−1/2(𝑥 − 𝜆)exp {𝜑 Φ [
1

𝛼
 (√

𝑥

𝜆
− √

𝜆

𝑥
)]} and𝑔(𝑥) = ℎ(𝑥) (1 −

𝜆

𝑥
) (𝑥2 + 𝜆3) 

for 𝑥 ∈ (0, ∞). The 𝑝𝑑𝑓 of 𝑋 is  that of PBS if and only if the function 𝜂 defined in 

Theorem 2.1 has the form 𝜂(𝑥) = 2𝛼2𝜆 + 𝑥 + 𝜆2𝑥−1,    𝑥 > 0.  
 

The goal of this paper is to provide characterizations of the McG-K, BEW, GEW, McN 

and Kw-IW families described above. These characterizations are based on: (𝑖) a simple 

relationship between two truncated moments, (𝑖𝑖) certain functions of the 𝑛th order 

statistic, (𝑖𝑖𝑖) certain functions of the first order statistic. It is widely known that the 

problem of characterizing a distribution is an important issue, which has attracted the 

attention of many researchers. Thus, various characterizations have been established in 

many different directions. For example, we can refer to Galambos and Kotz (1978), 

Glänzel (1987), Hamedani (1993, 2002, 2006), Glänzel and Hamedani (2001), Bairamov 

et al. (2005), Ahsanullah and Hamedani (2007), Tavangar and Asadi (2007), Beg and 

Ahsanullah (2007), Bieniek (2007), Baratpour et al. (2008), Nevzotov et al. (2003), Su et 

al. (2008), Ahmadi and Fashandi (2009), Haque et al. (2009), Akhundov and Nevzorov 

(2010), Khan et al. (2010), Hamedani and Ahsanullah (2011), Yanev and Ahsanullah 

(2012), among others. 

 

Although in many applications an increase in the number of parameters provides a more 

suitable model, in characterization problems a lower number of parameters (without 

seriously affecting the suitability of the model) is mathematically more appealing (see 

Glänzel and Hamedani, 2001). In the applications, where the underlying distribution is 

assumed to be McG-K, BEW, GEW, McN or Kw-IW distribution, the investigator needs 

to verify that the underlying distribution is in fact the McG-K or BEW or GEW or McN 

or Kw-IW distribution. To this end, the investigator has to rely on the characterizations of 

these distributions and determine if the corresponding conditions are satisfied. Thus, the 

problem of characterizing these families of distributions become essential. As mentioned 

before, our objective is to present characterizations of the McG-K, BEW, GEW, McN 

and Kw-IW families. 
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These classes of distributions provide tools to obtain new parametric distributions from 

existing ones and have applications in many fields, in particular in lifetime modeling. 

 

The paper is organized as follows. In Section 2, we consider a characterization based on 

two truncated moments. In Section 3, we discuss about characterizations based on 

truncated moment of the 𝑛𝑡ℎ order statistic. In Section 4, we provide characterizations 

based on truncated moment of the first order statistic. In Section 5, we derive expansions 

for the pdfs of those families as linear combinations of exponentiated - G (Exp-G) 

families, where G is the baseline model. Some mathematical properties are addressed 

(Section 6) and two applications are explored to prove the efficiency of the new 

generators (Section 7). Some concluding remarks are provided in Section 8. 

2.   Characterization based on two truncated moments 

In this section, we present characterizations of the McG-K, BEW, GEW, McN and Kw-

IW families in terms of a simple relationship between two truncated moments. The 

characterizations derived here employ an interesting result due to Glänzel (1987), which 

is given by the following theorem. 

 

Theorem 2.1  Let  (𝛺, ℱ, 𝑷)  be a given probability space and let  𝐻 = [𝑎, 𝑏]  be an 

interval for some  𝑎 < 𝑏  (𝑎 = −∞, 𝑏 = ∞  𝑚𝑖𝑔ℎ𝑡𝑎𝑠𝑤𝑒𝑙𝑙𝑏𝑒𝑎𝑙𝑙𝑜𝑤𝑒𝑑). Let  𝑋: 𝛺 → 𝐻 be 

a continuous random variable with distribution function 𝐹 and let 𝑔 and ℎ be two real 

functions defined on 𝐻 such that  

𝐄[𝑔(𝑋)|𝑋 ≥ 𝑥] = 𝐄[ℎ(𝑋)|𝑋 ≥ 𝑥]𝜂(𝑥),    𝑥 ∈ 𝐻, 
is defined for some real function  𝜂. Consider that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜂 ∈ 𝐶2(𝐻) and 𝐹 are 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation  ℎ𝜂 = 𝑔  has no real solution in the interior of 𝐻. Then, 𝐹 is 

uniquely determined by the functions 𝑔, ℎ and 𝜂, particularly  

𝐹(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜂′(𝑢)

𝜂(𝑢)ℎ(𝑢) − 𝑔(𝑢)
| exp[−𝑠(𝑢)] 𝑑𝑢, 

where the function  𝑠  is  a solution of the differential equation  𝑠′ =
𝜂′ℎ

𝜂ℎ−𝑔
  and  𝐶  is a 

constant chosen to make  ∫
𝐻

𝑑𝐹 = 1.  

 

Remarks 2.1  (𝑎) In Theorem 2.1, the interval 𝐻 need not be closed. 

(𝑏) The goal is to have the function 𝜂 as simple as possible.  

 

Proposition 2.1  Let 𝑋: 𝛺 → (0, ∞) be a continuous random variable and let ℎ(𝑥) =

𝐾(𝑥)𝑐 (1−𝑎) and 𝑔(𝑥) = 𝐾(𝑥)𝑐 (1−𝑎)[1 − 𝐾(𝑥)𝑐] for 𝑥 ∈ (0, ∞). The 𝑝𝑑𝑓 of 𝑋 is (1) if 

and only if the function 𝜂 defined in Theorem 2.1 has the form  

𝜂(𝑥) =
𝑏

𝑏 + 1
[1 − 𝐾(𝑥)𝑐],    𝑥 > 0. 

 

Proof. Let 𝑋 have pdf (1). Then, for 𝑥 > 0,  

[1 − 𝐹(𝑥)]𝐄[ℎ(𝑋)|𝑋 ≥ 𝑥] =
1

𝑏 𝐵(𝑎, 𝑏)
[1 − 𝐾(𝑥)𝑐] 𝑏 
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and  

[1 − 𝐹(𝑥)]𝐄[𝑔(𝑋)|𝑋 ≥ 𝑥] =
1

(𝑏 + 1)𝐵(𝑎, 𝑏)
[1 − 𝐾(𝑥)𝑐] 𝑏+1. 

Observe that,  

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

𝑏 + 1
𝐾(𝑥)𝑐 (1−𝑎)[1 − 𝐾(𝑥)𝑐] < 0. 

Conversely, if 𝜂 is given as above, then  

𝑠′(𝑥) =
𝜂′(𝑥) ℎ(𝑥)

𝜂(𝑥) ℎ(𝑥) − 𝑔(𝑥)
=

𝑐 𝑏 𝑘(𝑥) 𝐾(𝑥)𝑐−1

1 − 𝐾(𝑥)𝑐
 

and hence 

𝑠(𝑥) = −log[1 − 𝐾(𝑥)𝑐] 𝑏 + 𝐶1, 
where 𝐶1 is a constant. Now, in view of Theorem 2.1, 𝑋 has pdf (1) and cdf (2).  

 

Corollary 2.1  Let 𝑋: 𝛺 → (0, ∞) be a continuous random variable and let ℎ(𝑥) be as in 

Proposition 2.1. The 𝑝𝑑𝑓 of 𝑋 is (1) if and only if there exist functions 𝑔 and 𝜂 defined in 

Theorem 2.1 satisfying the differential equation  

𝜂′(𝑥)ℎ(𝑥)

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

𝑐𝑏𝑘(𝑥)𝐾(𝑥)𝑐−1

1 − 𝐾(𝑥)𝑐
,      𝑥 > 0. 

 

Remarks 2.2  (𝑎) The general solution of the differential equation in Corollary 2.1 is  

𝜂(𝑥) = [1 − 𝐾(𝑥)𝑐]−𝑏 [− ∫ 𝑔(𝑥)𝑐 𝑏 𝑘 (𝑥)𝐾(𝑥)𝑐 𝑎−1[1 − 𝐾(𝑥)𝑐]𝑏−1 d𝑥 + 𝐷], 

for  𝑥 > 0 , where 𝐷 is a constant. One set of appropriate functions satisfying the above 

equation is given in Proposition 1.2 with 𝐷 = 0. 
 
(𝑏) Clearly, there are other triplets of functions (ℎ, 𝑔, 𝜂) satisfying the conditions of 

Theorem 2.1.  

 

Proposition 2.2  Let 𝑋: 𝛺 → ℝ be a continuous random variable and let  

ℎ(𝑥) = Φ (
𝑥 − 𝜇

𝜎
)

𝑐(1−𝑎)

and𝑔(𝑥) = Φ (
𝑥 − 𝜇

𝜎
)

𝑐(1−𝑎)

[1 − Φ (
𝑥 − 𝜇

𝜎
)

𝑐

] 

for 𝑥 ∈ ℝ. The cdf of 𝑋 is (3) if and only if the function 𝜂 defined in Theorem 2.1 has the 

form 𝜂(𝑥) =
𝑏

𝑏+1
{1 − [Φ (

𝑥−𝜇

𝜎
)]

𝑐

} , 𝑥 ∈ ℝ.  

 

Proposition 2.3  Let 𝑋: 𝛺 → (0, ∞) be a continuous random variable and let  

ℎ(𝑥) = e𝛼(𝑏−1)𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]
1−𝑎

and𝑔(𝑥) = e−𝛼𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]
1−𝑎

 

for 𝑥 ∈ (0, ∞). The cdf of 𝑋 is (7) if and only if the function 𝜂 defined in Theorem 2.1 

has the form 𝜂(𝑥)  =  (𝑏 + 1)−1 e−𝛼 𝑏 𝑈(𝑥), 𝑥 > 0.  
 

Proposition 2.4  Let 𝑋: 𝛺 → (0, ∞) be a continuous random variable and let  

ℎ(𝑥) = 𝑉(𝑥; 𝜉)1−𝛿and𝑔(𝑥) = e−𝛼𝑉(𝑥;𝜉) 𝑉(𝑥; 𝜉)1−𝛿 

for 𝑥 ∈ (0, ∞). The cdf of 𝑋 is (10) if and only if the function 𝜂 defined in Theorem 2.1 

has the form 𝜂(𝑥) =
1

2
e−𝛼𝑉(𝑥;𝜉),      𝑥 > 0.  
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Remarks 2.3  (𝑎) Letting 𝑎 = 1 and then calling 𝑐 as 𝑎, the pdf (1) with 𝐾(𝑥) =

𝑒𝑥𝑝 (−
𝛼

𝑥𝛽) and 𝑘(𝑥) =
𝛼𝛽

𝑥𝛽+1 𝑒𝑥𝑝 (−
𝛼

𝑥𝛽) reduces to the pdf (4). So, the Kw-IW model is a 

special case of the McG-K distribution. (𝑏) A corollary and a remark similar to 

Corollary 2.1 and Remark 2.2(𝑎) can be stated for the BEW, GEW and McN 

distributions in the same way. For example, for the BEW distribution, the general 

solution of the differential equation is  

𝜂(𝑥) = e𝛼 𝑈(𝑥)  [− ∫ 𝑎 𝑢(𝑥) 𝑔(𝑥) e−𝛼 𝑏 𝑈(𝑥)[1 − e−𝛼 𝑈(𝑥)]
𝑎−1

 𝑑𝑥 + 𝐷], 

and for 𝑔(𝑥) and 𝜂(𝑥) given in Proposition 2.1, the constant 𝐷 = 0.  

 

Proof. We have ℎ(𝑥) = e𝛼(𝑏−1)𝑈(𝑥)[1 − e−𝛼 𝑈 (𝑥)]
1−𝑎

, 𝑔(𝑥) = e−𝛼 𝑈 (𝑥)[1 −

e−𝛼 𝑈(𝑥)]
1−𝑎

, 𝜂(𝑥) =
1

𝑏+1
 e−𝛼 𝑏 𝑈(𝑥)  and    𝜂′(𝑥) =

−𝑎 𝑏 𝑢(𝑥)

𝑏+1
e−𝛼𝑏 𝑈(𝑥). Thus,  

𝜂′(𝑥)ℎ(𝑥)

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

−𝑎𝑏𝑢(𝑥)

𝑏+1
e−𝛼 𝑏 𝑈(𝑥)e𝛼(𝑏−1)𝑈(𝑥)[1 − e−𝛼 𝑈 (𝑥)]

1−𝑎

1

𝑏+1
e−𝛼𝑏𝑈(𝑥)e𝛼(𝑏−1)𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]1−𝑎 − e−𝛼𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]1−𝑎

 

or  

𝜂′(𝑥)ℎ(𝑥)

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

−𝑎𝑏𝑢(𝑥)e−𝛼𝑏𝑈(𝑥)e𝛼(𝑏−1)𝑈(𝑥)

e−𝛼𝑏𝑈(𝑥)e𝛼(𝑏−1)𝑈(𝑥) − (𝑏 + 1)e−𝛼𝑈(𝑥)
 

or  

𝜂′(𝑥)ℎ(𝑥)

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

𝑎 𝑢(𝑥)e−𝛼𝑏 𝑈(𝑥)e𝛼(𝑏−1)𝑈(𝑥)

e−𝛼𝑈(𝑥)
= 𝑎 𝑢(𝑥) 

or  

𝜂′(𝑥)ℎ(𝑥) − 𝑎 𝑢(𝑥)𝜂(𝑥)ℎ(𝑥) = −𝑎 𝑢(𝑥)𝑔(𝑥) 

or  

𝜂′(𝑥) − 𝑎 𝑢(𝑥)𝜂(𝑥) = −𝑎 𝑢(𝑥)𝑔(𝑥)e−𝛼(𝑏−1)𝑈(𝑥)[1 − 𝑒−𝛼𝑈(𝑥)]
𝑎−1

 

or  

e−𝛼𝑈(𝑥)𝜂′(𝑥) − 𝑎 𝑢(𝑥)e−𝛼𝑈(𝑥)𝜂(𝑥) = −𝑎 𝑢(𝑥)𝑔(𝑥)e−𝛼𝑏𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]
𝑎−1

 

or  

𝜂(𝑥) = e𝛼𝑈(𝑥) [− ∫ 𝑎𝑢(𝑥)𝑔(𝑥)e−𝛼𝑏𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]
𝑎−1

𝑑𝑥 + 𝐷] 

or  

𝜂(𝑥) = e𝛼𝑈(𝑥) [− ∫ 𝑎 𝑢(𝑥)e−𝛼𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]
1−𝑎

e−𝛼𝑏𝑈(𝑥)[1 − e−𝛼𝑈(𝑥)]
𝑎−1

𝑑𝑥 + 𝐷] 

or  

𝜂(𝑥) = e𝛼𝑈(𝑥) [− ∫ 𝑎 𝑢(𝑥)e−𝛼𝑈(𝑥)e−𝛼𝑏𝑈(𝑥)𝑑𝑥 + 𝐷] 

or  

𝜂(𝑥) = e𝛼𝑈(𝑥) [− ∫ 𝑎 𝑢(𝑥)e−𝛼(𝑏+1)𝑈(𝑥)𝑑𝑥 + 𝐷] = e𝛼𝑈(𝑥) [
1

𝑏 + 1
e−𝛼(𝑏+1)𝑈(𝑥) + 𝐷] 

=
1

𝑏 + 1
e−𝛼𝑏𝑈(𝑥), 

where 𝐷 = 0.  
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3.   Truncated moment of the 𝒏𝒕𝒉 order statistic 

Let 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . ≤ 𝑋𝑛:𝑛 be the corresponding order statistics from a random sample 

of size 𝑛 from a continuous 𝑐𝑑𝑓 𝐹. We briefly discuss here characterization results based 

on functions of the 𝑛𝑡ℎ order statistic. We have the following proposition. 

 

Proposition 3.1  Let  𝑋: 𝛺 → (0, ∞) be a continuous random variable with 𝑐𝑑𝑓 𝐹.  Let  

𝜓 and 𝑞 be two differentiable functions in (0, ∞) such that 𝑙𝑖𝑚𝑥→0𝜓(𝑥)𝐹(𝑥)𝑛 = 0, 

∫
∞

0

𝑞′(𝑡)

[𝜓(𝑡)−𝑞(𝑡)]
𝑑𝑡 = ∞. 

 

Then,  

𝐸[𝜓(𝑋𝑛:𝑛)|𝑋𝑛:𝑛 < 𝑡] = 𝑞(𝑡), 𝑡 > 0,      (11) 

implies  

𝐹(𝑥) = exp {− ∫
∞

𝑥

𝑞′(𝑡)

𝑛[𝜓(𝑡)−𝑞(𝑡)]
𝑑𝑡} ,    𝑥 ≥ 0.     (12) 

 

Proof. If (11) holds, then using integration by parts on the left hand side of (11) and the 

condition  lim𝑥→0𝜓(𝑥)𝐹(𝑥)𝑛 = 0 , we have ∫
𝑡

0
𝜓′(𝑥)(𝐹(𝑥))

𝑛
𝑑𝑥 = [𝜓(𝑡) − 𝑞(𝑡)]𝐹(𝑡)𝑛. 

 

Differentiating both sides of the above equation with respect to  𝑡, we obtain  
𝑓(𝑡)

𝐹(𝑡)
=

𝑞′(𝑡)

𝑛[𝜓(𝑡) − 𝑞(𝑡)]
, 𝑡 > 0. 

 

Now, integrating the last equation from 𝑥 to ∞ , we have, in view of ∫
∞

0

𝑞′(𝑡)

[𝜓(𝑡)−𝑞(𝑡)]
d𝑡 =

∞, that the cdf 𝐹 is given by (12). 

 

Remarks 3.1.  (𝑎) Taking, for instance, 𝜓(𝑥) = [1 − e−𝛼𝑈(𝑥)]
𝑛𝑎

 and 𝑞(𝑥) =
1

2
𝜓(𝑥) in 

Proposition 3.1 the above equation reduces to 𝑓(𝑥)𝐹(𝑥)−1 = 𝑎 𝛼 𝑢(𝑥) e−𝛼 𝑈 (𝑥)[1 −

e−𝛼𝑈(𝑥)]−1, from which, in view of (12), we have 𝐹(𝑥) = [1 − e−𝛼𝑈(𝑥)]
𝑎

, which is the 

𝑐𝑑𝑓 (7) with 𝑏 = 1. 
 

(𝑏) Taking, for instance, 𝜓(𝑥) = [Φ (
𝑥−𝜇

𝜎
)]

𝑛𝑎𝑐

  and   𝑞(𝑥) =
1

2
𝜓(𝑥) in Proposition 3.1 

the last above equation becomes 𝑓(𝑥)𝐹(𝑥)−1 = 𝑎𝑐
𝑑

𝑑𝑥
{(Φ (

𝑥−𝜇

𝜎
))

𝑐(1−𝑎)

} (Φ (
𝑥−𝜇

𝜎
))

−1

,  

from which, in view of (12), we have 𝐹(𝑥) = [Φ (
𝑥−𝜇

𝜎
)]

𝑎𝑐

, which is the cdf (3) with 𝑏 =

1. 

4.   Characterizations based on the truncated moment of the first order statistic 

We state here two characterizations based on certain functions of the first order statistic. 

We like to mention that the proof of Proposition 4.1 below is a straightforward extension 

of Theorem 2.2 of Hamedani (2010). We give a short proof of it for the sake of 

completeness. 
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Proposition 4.1  Let 𝑋: 𝛺 → (0, ∞) be a continuous random variable with 𝑐𝑑𝑓 𝐹. Let 

𝜓(𝑥) and 𝑞(𝑥) be two differentiable functions on (0, ∞) such that 𝑙𝑖𝑚𝑥→∞𝜓(𝑥)[1 −

𝐹(𝑥)]𝑛 = 0, ∫
∞

0

𝑞′(𝑡)

[𝑞(𝑡)−𝜓(𝑡)]
𝑑𝑡 = ∞. Then,  

𝐸[𝜓(𝑋1:𝑛)|𝑋1:𝑛 > 𝑡] = 𝑞(𝑡), 𝑡 > 0,      (13) 

implies 𝐹(𝑥) = 1 − exp {− ∫
𝑥

0

𝑞′(𝑡)

𝑛[𝑞(𝑡)−𝜓(𝑡)]
𝑑𝑡} ,    𝑥 ≥ 0. 

 

Proof. If (13) holds, then using integration by parts on the left hand side of (13) and the 

assumption lim𝑥→∞𝜓(𝑥)[1 − 𝐹(𝑥)]𝑛 = 0, we have ∫
∞

𝑡
𝜓′(𝑥)(1 − 𝐹(𝑥))

𝑛
𝑑𝑥 =

[𝑞(𝑡) − 𝜓(𝑡)](1 − 𝐹(𝑡))
𝑛

. 
 

Differentiating both sides of the above equation with respect to 𝑡, we obtain  
𝑓(𝑡)

1−𝐹(𝑡)
=

𝑞′(𝑡)

𝑛[𝑞(𝑡)−𝜓(𝑡)]
,    𝑡 > 0.       (14) 

 

Now, integrating both sides of (14) from 0 to 𝑥, we have, in view of  ∫
∞

0

𝑞′(𝑡)

[𝑞(𝑡)−𝜓(𝑡)]
𝑑𝑡 =

∞, the cdf 𝐹 given in Proposition 4.1. 

 

Remarks 4.1.  (𝑎) Taking, for instance,  𝜓(𝑥) = e−𝑛𝑎𝑉(𝑥;𝜉) and   𝑞(𝑥) = 1/2 𝜓(𝑥) in 

Proposition 4.1, we obtain (10) for   𝑏 = 1. (𝑏) Taking, for instance,  𝜓(𝑥) = [1 −

e
−

𝑎𝛼

𝑥𝛽]
𝑛𝑏

 and   𝑞(𝑥) =
1

2
𝜓(𝑥) in Proposition 4.1, we obtain (5). 

5.   Useful representation 

Theorem 5.1  Let 𝑋 be a random variable having any of the five families of distributions 

discussed so far and the function 𝑚𝑘(𝑎, 𝑐) = 𝑐(𝑎 + 𝑘), where 𝑘 = 1,2, … and 𝑎, 𝑐 ∈  ℝ+. 

The pdf of 𝑋 can be expressed as the linear combination  

𝑓(𝑥)  =  ∑∞
𝑘=0  𝑏𝑘 ℎ𝑐(𝑎+𝑘)(𝑥),      (15) 

where ℎ𝑐(𝑎+𝑘)(𝑥) denotes the  𝐸𝑥𝑝 − 𝐺 (𝑐(𝑎 + 𝑘)) density function.  

 

Proof. First, consider the GG family. From equation (8) and based on an expansion due to 

Nadarajah et al. (2015), we can write (for 𝑎 > 0)  

𝑓(𝑥) = ∑∞
𝑘=0  𝑏𝑘 ℎ𝑎+𝑘(𝑥) = ∑∞

𝑘=0  𝑏𝑘 ℎ𝑚𝑘(𝑎,1)(𝑥),    (16) 

where 𝑏𝑘 =
1

(𝑎+𝑘)Γ(𝑎−1)
 𝑘 + 1 − 𝑎

𝑘
 ∑𝑘

𝑗=0

(−1)𝑗+𝑘  𝑝𝑗,𝑘

(𝑎−1−𝑗)
 𝑘

𝑗
, and ℎ𝑚𝑘(𝑎,1)(𝑥) = ℎ(𝑎+𝑘)(𝑥) 

denotes the Exp-𝐺(𝑐(𝑎 + 𝑘)) density function with 𝑐 = 1.  

 

Second, we consider 𝑋~McG-K(𝑎, 𝑏, 𝑐,   𝜏 ). Expanding the binomial in (1) yields:  

𝑓(𝑥) = 𝑐 𝐵(𝑎, 𝑏 + 1)−1 𝑓(𝑥) ∑∞
𝑘=0 (−1)𝑘 𝑏

𝑘
 𝐹(𝑥)𝑐 (𝑎+𝑘)−1 =

∑∞
𝑘=0  𝑏𝑘 ℎ𝑚𝑘(𝑎,𝑐)(𝑥),         (17) 

where ℎ𝑚𝑘(𝑎,𝑐)(𝑥) = ℎ𝑐 (𝑎+𝑘)(𝑥) denotes the density of Exp-G(𝑐 (𝑎 + 𝑘)) and 𝑏𝑘 =

(−1)𝑘 (𝑎 + 𝑘)−1 𝑏
𝑘

 𝐵(𝑎, 𝑏 + 1)−1.  
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Third, we consider 𝑋~BG(𝑎, 𝑏,   𝜏 ). This distribution is a special case of the McG-K 

distribution with 𝑐 = 1 and the same 𝑏𝑘. Now, consider 𝑋~Kw-G(𝑎, 𝑏,   𝜏 ). This 

distribution is a special case of the McG-K distribution too, but with 𝑎 = 1, changing 𝑐 =

𝑎, and 𝑏𝑘  =  (−1)𝑘 (𝑘 + 1)−1 𝑏 − 1
𝑘

 𝑏. Thus, we prove equation (15) in five parts (for 

each five families), as shown in equations (16) and (17). Besides that, each family has 

specific weights.  

6.   Mathematical properties 

In this section, we derive moments, moment generating function (mgf) and quantile 

function (qf) of those distributions. 

6.1  Moments 

We derive several representations for the moment 𝜇𝑠
′ = 𝐸(𝑋𝑠) of 𝑋 having all of five 

families discussed in this paper. Note that other kinds of moments related to the L-

moments of Hosking (1990) may also be obtained in closed-form, but we confine 

ourselves here to 𝜇𝑠
′  for brevity. 

 

Henceforth, we assume that 𝑌𝑐(𝑎+𝑘)~Exp-G(𝑐(𝑎 + 𝑘)). The importance of moments in 

Statistics especially in applications is obvious. A first formula for the 𝑛th moment of 𝑋 

can be obtained from (15) and the monotone convergence theorem as 𝜇𝑛
′ = 𝐸(𝑋𝑛) =

∑∞
𝑘=0 𝑏𝑘 𝐸(𝑌𝑐(𝑎+𝑘)

𝑛 ). A second formula for 𝐸(𝑋𝑛) follows from the last identity in terms 

of the baseline qf 𝑄𝐺(𝑢) = 𝐺−1(𝑢) as 𝜇𝑛
′ = ∑∞

𝑘=0 𝑐(𝑎 + 𝑘) 𝑏𝑘 𝜏(𝑛, 𝑘), where 𝜏(𝑛, 𝑘) =

∫
∞

−∞
𝑥𝑛 𝐺(𝑥)𝑘 𝑔(𝑥)𝑑𝑥 = ∫

1

0
𝑄𝐺(𝑢)𝑛 𝑢𝑘𝑑𝑢. 

6.2 Moment generating function 

The mgf provides the basis of an alternative route to analytical results compared with 

working directly with the pdf and cdf and it is widely used in the characterization of 

distributions and the application of the skew-normal test (Meintanis, 2010) and other 

goodness of fit tests (Ghosh, 2013). 

 

Here, we provide two formulae for the mgf 𝑀(𝑡) = 𝐸[exp(𝑡 𝑋)] of 𝑋. A first formula for 

𝑀(𝑡) comes from (15) and the monotone convergence theorem as 𝑀(𝑡) =
∑∞

𝑘=0 𝑏𝑘 𝑀𝑐(𝑎+𝑘)(𝑡), where 𝑀𝑐(𝑎+𝑘)(𝑡) is the mgf of 𝑌𝑐(𝑎+𝑘). Hence, 𝑀(𝑡) can be 

determined from the generating function of the Exp-G distribution. An alternative 

formula for 𝑀(𝑡) can be derived from the last identity as 𝑀(𝑡) = ∑∞
𝑖=0 𝑐(𝑎 +

𝑘) 𝑏𝑘 𝜌(𝑡, 𝑘), where 𝜌(𝑡, 𝑘) = ∫
∞

−∞
𝑒𝑡 𝑥 𝐺(𝑥)𝑘 𝑔(𝑥)𝑑𝑥 = ∫

1

0
exp{𝑡 𝑄𝐺(𝑢)} 𝑢𝑘𝑑𝑢. 

6.3  Quantile function 

The GBG qf is obtained by inverting the parent cdf 𝐾(𝑥). We have 𝑄𝐺𝐵𝐺(𝑢;    𝜏 , 𝑎, 𝑏, 𝑐) 

= 𝐾−1 ([𝑄𝛽(𝑎,𝑏)(𝑢)]
1/𝑐

), where 𝑄𝛽(𝑎,𝑏)(𝑢) = 𝐼−1(𝑢; 𝑎, 𝑏) is the ordinary beta qf. It is 

possible to obtain some expansions for the beta qf with positive parameters 𝑎 and 𝑏. One 

of them can be found on the Wolfram website 
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(http://functions.wolfram.com/06.23.06.0004.01) as 𝑧 = 𝑄𝛽(𝑎,𝑏)(𝑢) = 𝑎1𝑣 + 𝑎2𝑣2 +

𝑎3𝑣3 + 𝑎4𝑣4 + 𝑂(𝑣5/𝑎), where 𝑣 = [𝑎 𝐵(𝑎, 𝑏) 𝑢]1/𝑎 for 𝑎 > 0 and 𝑎0 = 0, 𝑎1 = 1, 

𝑎2 = (𝑏 − 1)/(𝑎 + 1), 𝑎3 = (𝑏 − 1)[𝑎2 + (3𝑏 − 1)𝑎 + 5𝑏 − 4]/[2(𝑎 + 1)2(𝑎 + 2)], 
𝑎4 = (𝑏 − 1)[𝑎4 + (6𝑏 − 1)𝑎3 + (𝑏 + 2)(8𝑏 − 5)𝑎2 + (33𝑏2 − 30𝑏 + 4)𝑎 + 𝑏(31𝑏 −
47) + 18]/[3(𝑎 + 1)3(𝑎 + 2)(𝑎 + 3)], … The coefficients 𝑎𝑖 (for 𝑖 ≥ 2) can be derived 

from a cubic recursion of the form 𝑎𝑖 = [𝑖2 + (𝑎 − 2)𝑖 − (𝑎 − 1)]−1{(1 −
𝛿𝑖,2) ∑𝑖−1

𝑟=2 𝑎𝑟 𝑎𝑖+1−𝑟 [𝑟(1 − 𝑎)(𝑖 − 𝑟) − 𝑟(𝑟 − 1)] + ∑𝑖−1
𝑟=1 ∑𝑖−𝑟

𝑠=1 𝑎𝑟 𝑎𝑠 𝑎𝑖+1−𝑟−𝑠 [𝑟(𝑟 −
𝑎) + 𝑠(𝑎 + 𝑏 − 2)(𝑖 + 1 − 𝑟 − 𝑠)]}, where 𝛿𝑖,2 = 1 if 𝑖 = 2 and 𝛿𝑖,2 = 0 if 𝑖 ≠ 2. In the 

last equation, we note that the quadratic term only contributes for 𝑖 ≥ 3. 

7.   Applications 

In this section, we compare the fits of the BG, GG, KwG and McG with the baselines 

Gamma (Γ), Weibull (W) and Inverse Weibull (IW) to two real data sets from Murthy et 

al. (2004). 

7.1  Application 1: Stress data 

These data refer to accelerated life testing of (𝑛 = 40) items with change in stress from 

100 to 150 at 𝑡 = 15. The data are: 

 

4.79, 7.17, 7.31, 7.43, 7.84, 8.49, 8.94, 9.40, 9.61, 9.84, 10.58, 11.18, 11.84, 13.28, 14.47, 

14.79, 15.54, 16.90, 17.25, 17.37, 18.69, 18.78, 19.88, 20.06, 20.10, 20.95, 21.72, 23.87.  

 

Table 1 provides a summary of these data. The stress data have positive skewness and 

negative kurtosis. 

Table  1:   Descriptive statistics.  𝒂There are various modes. 

Data Mean Median  Mode 
 Std. 

Dev. 
Variance Skewness Kurtosis Min. Max. 

Stress 10.45 9.51 1.3a 6.99 48.86 0.23 -1.19 0.13 23.87 

 

Table 2 lists the values of the following statistics for some models: Akaike Information 

Criterion (AIC), Consistent Akaike Information Criterion (AICc) and Bayesian 

Information Criterion (BIC). The figures involving the Γ and IW baselines in Table 2 

indicate that the Kw-G model has the smallest values of these statistics among all fitted 

models. So, it could be chosen as the more suitable model in these cases (when we use 

gamma and IW as the parent distributions). However, note that when the baseline is 

Weibull, the GG family presents better performance than the others. Thus, we can say 

that is important to propose new generators in order to provide better fits to real data sets. 

Table 2:   Relative goodness-of-fit for the selected generators 
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  Measures 

Models   AIC   AICc   BIC  

(Baseline: Gamma) 

B𝚪   262.5893   263.7322   269.3448  

G𝚪   267.1444   267.8111   272.2111  

Kw𝚪    261.6627    262.8056    268.4182  

Mc𝚪   263.6835   265.4482   272.1279  

(Baseline: Weibull) 

BW   282.0882   283.2311   288.8437  

GW    261.4682    262.1349    266.5349  

KwW   271.4083   272.5511   278.1638 

McW   289.3399   291.1046   297.7843 

(Baseline: Inverse Weibull) 

BIW   288.9176   290.0604   295.6731  

GIW   295.3439   296.0105   300.4105  

KwIW    278.4004    279.5432    285.1559  

McIW   279.9951   281.7598   288.4395  

 

Besides that, note that when we compare the models KwΓ, GW and KwIW (models that 

field better adjustments), the best of them was the second, showing, in this study, that the 

gamma generator provides the best performance among the others generators. Moreover, 

we also provide a visual comparison of the histogram of the data with the fitted density 

functions. The plots of the fitted densities for the baselines Γ, W and IW are displayed in 

Figures 1(a), 1(b) and 1(c), respectively, for the data set. We only reinforce what has 

been said above. 

 

 
Figure  1: Estimated densities of the selected generators for stress data. 

7.2  Application 2: Repairable data 

The following data refer to the time between failures for repairable itens (𝑛 = 30): 

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 

2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24,1.97, 1.86, 1.17. 

 

Table 3 provides a summary of these data. The repairable data has positive skewness and 

kurtosis, and has less variability. 

Table 3:   Descriptive statistics 
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Data  Mean  Median  Mode 
 Std. 

Dev. 
Variance Skewness Kurtosis Min. Max. 

Repairable 1.54 1.24 1.23 1.13 1.27 1.37 1.8 0.11 4.73 

 

Table 4 lists the values of the following statistics for some models: AIC, AICc and BIC. 

The figures involving Γ and 𝑊 baselines in Table 4 indicate that the GG model has the 

smallest values of these statistics among all fitted models. So, it could be chosen as the 

more suitable model in this case (when we take gamma and Weibull as the baselines). 

However, note that when the baseline is Weibull, the GG generator presents better 

performance than the others, as in the first application. Besides that, note too that when 

we compare the GΓ, GW and KwIW models (those that yield better adjustments), the best 

of them is the second, showing, in this study, that the GG generator provides the best 

performance among the other current models. These results are exhibited in Figure 2. 

Table 4:   Relative goodness-of-fit for the selected generators   

  Measures 

Models   AIC   AICc   BIC  

(Baseline: Gamma) 

BΓ   87.22407   88.82407   92.82886  

GΓ    85.25093    86.17401    89.45453  

KwΓ   87.2274   88.8274   92.83219  

McΓ   89.23693   91.73693   96.24291  

(Baseline: Weibull) 

BW   87.19683   88.79683   92.80162  

GW    85.23609    86.15917    89.43968  

KwW   87.24511   88.84511   92.8499 

McW   90.57175   93.07175   97.57774 

(Baseline: Inverse Weibull) 

BIW   87.70437   89.30437   93.30916  

GIW   92.60976   93.53284   96.81335  

KwIW    87.48851    89.08851    93.0933  

McIW   102.6596   105.1596   109.6656  

 

 

 
Figure  2: Estimated densities for the selected generators for repairable data. 

8.   Concluding remarks 
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We study the characterizations of some important classes of generalized distributions 

such as the beta-G, Gamma-G, Kumaraswamy-G and McDonald-G, in three different 

directions. We believe that our characterizations will be the only ones for some classes 

due to the complexity of their cumulative distribution functions. Further, we discuss 

certain properties of these distributions, which would be valuable to researchers in 

applications. 
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