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Abstract 

In this paper we defined a new lifetime model called the the Exponentiated additive Weibull (EAW) 

distribution. The proposed distribution has a number of well-known lifetime distributions as special sub-

models, such as the additive Weibull, exponentiated modified Weibull, exponentiated Weibull and 

generalized linear failure rate distributions among others. We obtain quantile, moments, moment generating 

functions, incomplete moment, residual life and reversed Failure Rate Functions, mean deviations, 

Bonferroni and Lorenz curves. The method of maximum likelihood is used for estimating the model 

parameters. Applications illustrate the potentiality of the proposed distribution. 

Keywords: Exponentiated additive Weibull, Moments, Modified Weibull Distribution, 

Maximum likelihood estimation. 

1. Introduction 

In reliability engineering and lifetime analysis many applications require a bathtub 

shaped hazard rate function. Weibull distribution is one of the most commonly used 

lifetime distributions in reliability and lifetime data analysis. It is flexible in modeling 

failure time data, as the corresponding hazard rate function can be increasing,constant or 

decreasing. But in many applications in reliability, mechanical and electronic components 

and survival analysis, the hazard rate function can be of bathtub shape. It is well known 

that, because of design and manufacturing problems, the hazard rate is high at the 

beginning of a product life cycle and decreases toward a constant level. After reaching a 

certain age, the product enters wear-out phase and hazard rate starts to increase. Despite 

the fact that this phenomenon has been presented in many reliability engineering texts 

few practical models possessing this property have appeared in the literatures two-

parameter flexible Weibull extension of Bebbington et al. (2007) has a hazard function 

that can be increasing, decreasing or bathtub shaped. Zhang and Xie (2011) studied the 

characteristics and application of the truncated Weibull distribution which has a bathtub 

shaped hazard function.  
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A three parameter model, called exponentiated Weibull distribution, was introduced by 

Mudholkar and Srivastave (1993). Xie and Lai (1995) introduced a four-parameter 

distribution called the additive Weibull distribution based on the simple idea of 

combining the hazard rates of two Weibull distributions: one has a decreasing hazard rate 

and the other one has an increasing hazard rate. It has the cumulative distribution 

function is given by  

𝐹(𝑥, 𝛼, 𝜃, 𝜇, 𝛽) = 1 − 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽);      𝑥 > 0,                                                         (1) 

where 𝛼 > 0, 𝜇 > 0 and 𝜃 > 𝛽 > 0, or 𝛽 > 𝜃 > 0 which gives identifiability to the 

model, when 𝜃 > 0 the hazard rate is increasing and when 0 < 𝛽 < 1 hazard rate is 

decreasing. The corresponding probability density function is  

𝑓(𝑥, 𝛼, 𝜃, 𝜇, 𝛽) = (𝛼𝜃𝑥𝜃−1 + 𝜇𝛽𝑥𝛽−1)𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽),                                            (2) 

where 𝛼 > 0 and 𝜇 > 0 are scale parameters, and 𝜃 > 𝛽 > 0, or ( 𝛽 > 𝜃 > 0) are shape 

parameters. The interpretation of model (2) is evident. Suppose a system composed of 

two interconnected independent series sub-systems that affect the system in a different 

way, each one having a Weibull distribution with proper parameters. The hazard time of 

the system follows (2), since it occurs when the first of the two sub-systems fails.  

 

Since 1995, exponentiated distributions have been widely studied in statistics and 

numerous authors have developed various classes of these distributions. A good review 

of some of these models is presented by Pham and Lai (2007). The exponentiation of 

distributions is a mechanism that makes the model more flexible, Nadarajah and Kotz 

(2006) introduce four more exponentiated type distributions: the Exponentiated Gamma, 

Exponentiated Weibull, exponentiated Gumbel and the Exponentiated Fréchet 

distribution. There are also several authors presented exponentiated distributions, such as 

Barriga, Louzada and Cancho (2011) with the Complementary Exponential Power 

distribution which is the exponentiation of the Exponential Power distribution proposed 

by Smith and Bain (1975) denoted as Complementary Exponential Power distribution, 

Bakouch, Al-Zahrani, Al-Shomrani, Marchi and Louzada (2011) with the extension of 

the Lindley (EL) distribution and the Complementary Exponential Power distribution 

(CEP) introduced by Barriga, Louzada and Cancho (2011).  

 

In this paper, the so-called exponentiated additive Weibull (EAW) distribution with five 

parameters is proposed. The new distribution due to its flexibility in accommodating all 

the forms of the hazard rate function can be used in a variety of problems for modeling 

lifetime data. Another important characteristic of the distribution is that it contains, as 

special sub-models, the Weibull, exponentiated exponential (Gupta and Kundu, 1999, 

2001), exponentiated modified Weibull distribution (Elbatal, 2009), exponentiated 

Weibull distribution (Mudholkar et al., 1995, 1996), generalized linear failure rate 

distribution, (Sarhan and Kundu, 2009), Modified Weibull distribution (Lai et al, 2003), 

among some other distributions. The exponentiated additive Weibull distribution is not 

only convenient for modeling comfortable bathtub-shaped failure rates data but is also 

suitable for testing goodness-of-fit of some special sub-models such as the exponentiated 

Weibull and modified Weibull distributions.  
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The rest of the article can be organized as follows. In section 2 we present the expression 

of the pdf and cdf of the subject distribution and some special sub-models. In section 3 

we study the statistical properties including moments, moment generating function and 

incomplete moments. Residual life and reversed residual functions of the 𝐸𝐴𝑊 

distribution, Bonferroni and Lorenz curves and mean deviations are discussed in Section 

4. In section 5 we demonstrate the maximum likelihood estimates of the unknown 

parameters. Simulation results to assess the performance of the maximum likelihood 

estimation method are reported in Section 6. Finally, in section 7 we present a data 

analysis to illustrate the usefulness of the proposed distribution. 

2. Exponentiated Additive Weibull Distribution 

A random variable 𝑋 has the 𝐸𝐴𝑊 distribution with parameter vector 𝝓 = (𝛼 , 𝜃, 𝜇, 𝛽 

, 𝜆)𝑇 say, 𝐸𝐴𝑊 (𝝓), or 𝐸𝐴𝑊(𝛼, 𝜃, 𝜇, 𝛽, 𝜆) if its cumulative distribution given by 

𝐹(𝑥, 𝝓) = [1 − 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽)]

𝜆

;     𝑥 > 0,                                                                (3) 

and its probability density function given by 

𝑓(𝑥, 𝝓) = 𝜆(𝛼𝜃𝑥𝜃−1 + 𝜇𝛽𝑥𝛽−1)𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽) [1 − 𝑒−(𝛼𝑥

𝜃+𝜇𝑥𝛽)]
𝜆−1

              (4) 

 

The survival function, also known as the reliability function (rf) in engineering, is the 

characteristic of an explanatory variable that maps a set of events, usually associated with 

mortality or failure of some system onto time. The corresponding survival function of 

random variable 𝑋 is 

𝐹(𝑥,𝝓) = 1 − [1 − 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽)]

𝜆

,                                                                          (5) 

and the hazard rate (failure) function (hrf) which is an important quantity characterizing 

life phenomenon functions takes the following form 

ℎ(𝑡) =
𝑓(𝑡, 𝝓)

𝐹(𝑡, 𝝓)
=
𝜆(𝛼𝜃𝑡𝜃−1 + 𝜇𝛽𝑡𝛽−1)𝑒−(𝛼𝑡

𝜃+𝜇𝑡𝛽) [1 − 𝑒−(𝛼𝑡
𝜃+𝜇𝑡𝛽)]

𝜆−1

1 − [1 − 𝑒−(𝛼𝑡
𝜃+𝜇𝑡𝛽)]

𝜆
; 𝑡 > 0    (6) 

whereas its reversed hazard rate (failure) function (rhf) is given by 

𝜏(𝑡) =
𝑓(𝑡,𝝓)

𝐹(𝑡, 𝝓)
=
𝜆(𝛼𝜃𝑡𝜃−1 + 𝜇𝛽𝑡𝛽−1)𝑒−(𝛼𝑡

𝜃+𝜇𝑡𝛽)

[1 − 𝑒−(𝛼𝑡
𝜃+𝜇𝑡𝛽)]

; 𝑡 > 0.                                (7) 

 

Figure 1 provides some plots of the density curves for different values of the parameters 

𝛼, 𝜃, 𝜇, 𝛽 and 𝜆. 

 

Figure 2 provides the same for some plots of the hrf, it is showing that the 𝐸𝐴𝑊 

distribution is quite flexible for modelling survival data. 
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(𝑎)                                                                                       (𝑏) 

Figure 1: Plots of the 𝑬𝑨𝑾 distribution for some parameter values. 

 

 

  

(𝑎)                                                                                       (𝑏) 

Figure 2: The 𝑬𝑨𝑾 hazard rate function for some parameter values. 

 

 

It is known, not many lifetime distributions exhibit bathtub hazard rates. The 𝐸𝐴𝑊 model 

shows flexibility in accommodating all forms of the hazard rate function as seen from 

Figure 2 (by changing its parameter values) seems to be an important distribution that can 

be used. 

2.1.  Special Cases of the 𝑬𝑨𝑾 Distribution 

The exponentiated additive Weibull distribution is a very flexible model that approaches 

to different distributions when its parameters vary. The flexibility of the exponentiated 

additive Weibull distribution is explained in Table 1. Note that in the table we have used 

the following abbreviations:  
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𝐴 = Additive; 𝐺 = Generalized; 𝑀 = Modified, 𝑊 = Weibull, 𝐸𝑥 = Exponential, 

𝐸 =Exponentiated, 𝐿𝐹𝑅 = Linear Failure Rate and 𝑅 = Rayleigh. If 𝑋 is a random 

variable with cdf (3), then we have the following cases: 

Table 1:   The sub-models of the 𝑬𝑨𝑾 distribution 

𝑴𝒐𝒅𝒆𝒍  𝛼 𝜃 𝜇 𝛽 𝜆 𝑪𝑫𝑭 References 

𝐴𝑊  − − − − 1 1 − 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽) Xie and Lai (1995) 

𝐸𝑀𝑊  − 1 − − − [1 − 𝑒−(𝛼𝑥+𝜇𝑥
𝛽)]

𝜆

 Elbatal (2011) 

𝑀𝑊  − 1 − − 1 1 − 𝑒−(𝛼𝑥+𝜇𝑥
𝛽) Sarhan and Zaindin (2009) 

𝐸𝑊  0 − − − − [1 − 𝑒−𝜇𝑥
𝛽
]
𝜆

 Mudholkar and Srivastava (1993) 

𝐺𝐸𝑥(𝐸𝐸𝑥)  − 1 0 − − [1 − 𝑒−𝛼𝑥]𝜆 Gupta and Kundu (1999) 

𝐺𝑅  0 − − 2 − [1 − 𝑒−𝜇𝑥
2)]

𝜆
 Kundu and Raqab (2005) 

𝐺𝐿𝐹𝑅  − 1 − 2 − [1 − 𝑒−(𝛼𝑥+𝜇𝑥
2)]

𝜆
 Sarhan and Kundu (2009) 

𝐿𝐹𝑅  − 1 − 2 1 1 − 𝑒−(𝛼𝑥+𝜇𝑥
2) Bain (1974) 

𝑊  0 − − − 1 1 − 𝑒−𝜇𝑥
𝛽
 Weibull (1951) 

𝐸𝑥  − 1 0 − 1 1 − 𝑒−𝛼𝑥 Bain (1974) 

𝑅  0 − − 2 1 1 − 𝑒−𝜇𝑥
2
 Bain (1974) 

3. Statistical Properties 

In this section we studied the shapes, statistical properties, specifically moments, 

incomplete moment, and moment generating function of the (𝐸𝐴𝑊) distribution. 

3.1. Shapes 

We provide the shapes of the 𝐸𝐴𝑊 density function (4) and the shapes of the 𝐸𝐴𝑊 

failure rate function (6). After some mathematical proccess, the limit of the pdf (4) as 𝑥 

approaches to 0, is 

lim
𝑥→0

𝑓(𝑥) =

{
  
 

  
 
0,            𝜆 > 1,                                                                     
∞,           0 < 𝜆 < 1,                                                             
∞,           0 < 𝜃 < 𝛽 < 1  or  0 < 𝛽 < 𝜃 < 1, 𝜆 = 1,   
∞,           𝜃 > 1, 𝛽 < 1  or  𝜃 < 1, 𝛽 > 1, 𝜆 = 1,           
0,             1 < 𝜃 < 𝛽 < ∞  or  1 < 𝛽 < 𝜃 < ∞, 𝜆 = 1,
𝛼 + 𝜇,     𝜃 = 𝛽 = 𝜆 = 1.                                                    

                  

 

and the limit of the pdf (4) as 𝑥 approaches to ∞, is lim
𝑥→∞

𝑓(𝑥) = 0. 



Abdullah Aljouiee, Ibrahim Elbatal, Hazem Al-Mofleh 

Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp403-420 408 

3.2. Moments 

In this section, the different moments of the exponentiated additive Weibull distribution 

can be obtained using the 𝑟𝑡ℎ  moment  𝜇𝑟
′ = 𝐸(𝑋𝑟) and the moment generating function, 

𝑀(𝑡) = 𝑒𝑡𝑋 . 

Theorem 1 The 𝑟𝑡ℎ  moment of 𝐸𝐴𝑊 distribution, 𝑟 = 1,2, . ... is given by 

𝜇𝑟
′ = 𝜆∑∞𝑗,𝑘=0 (

𝜆−1
𝑗
) (−1)𝑗+𝑘

[𝜇(𝑗+1)]𝑘

𝑘!
[

𝛼Γ(
𝑟+𝛽𝑘

𝜃
+1)

[𝛼(𝑗+1)]
𝑟+𝛽𝑘
𝜃

+1
+

𝜇𝛽Γ(
𝑟+𝛽(𝑘+1)

𝜃
)

𝜃[𝛼(𝑗+1)]
𝑟+𝛽(𝑘+1)

𝜃

] (8) 

 

Proof  We start with the well known definition of the 𝑟𝑡ℎ  moment of the random variable 

𝑋 with probability density function 𝑓(𝑥) given by 

𝜇𝑟
′ = ∫

∞

0

𝑥𝑟𝑓(𝑥, 𝛼, 𝛽, 𝜆, 𝜃)𝑑𝑥. 

 

Substituting from (4) into the above relation, we get 

𝜇𝑟
′ = 𝜆∫

∞

0

𝑥𝑟(𝛼𝜃𝑥𝜃−1 + 𝜇𝛽𝑥𝛽−1)𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽) [1 − 𝑒−(𝛼𝑥

𝜃+𝜇𝑥𝛽)]
𝜆−1

𝑑𝑥,        (9) 

since 0 < 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽) < 1 for 𝑥 > 0, then by using the binomial series expansion of 

[1 − 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽)]

𝜆−1

is given by 

[1 − 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽)]

𝜆−1

=∑
∞

𝑗=0
(
𝜆 − 1

𝑗
) (−1)𝑗𝑒−𝑗(𝛼𝑥

𝜃+𝜇𝑥𝛽),                                (10) 

we get 

𝜇𝑟
′ = 𝜆∑

∞

𝑗=0
(
𝜆 − 1

𝑗
) (−1)𝑗∫

∞

0

(𝛼𝜃𝑥𝑟+𝜃−1 + 𝜇𝛽𝑥𝑟+𝛽−1)𝑒−(𝑗+1)(𝛼𝑥
𝜃+𝜇𝑥𝛽)𝑑𝑥,   (11) 

but the series expansion of 𝑒−(𝑗+1)𝜇𝑥
𝛽
 is given by 

𝑒−(𝑗+1)𝜇𝑥
𝛽
=∑

∞

𝑘=0

[−𝜇(𝑗 + 1)𝑥𝛽]
𝑘

𝑘!
,                                                                          (12) 

substituting from (12) into (11), we get 

𝜇𝑟
′ = 𝐶𝑗,𝑘∫

∞

0

(𝛼𝜃𝑥𝑟+𝛽𝑘+𝜃−1 + 𝜇𝛽𝑥𝑟+𝛽(𝑘+1)−1)𝑒−(𝑗+1)𝛼𝑥
𝜃
𝑑𝑥,                              (13) 

where 

𝐶𝑗,𝑘 = 𝜆∑
∞

𝑗,𝑘=0
(
𝜆 − 1

𝑗
) (−1)𝑗+𝑘

[𝜇(𝑗 + 1)]𝑘

𝑘!
, 

setting 𝑡 = (𝑗 + 1)𝛼𝑥𝜃, after some algebra, the integral in (13) can be computed as 

follows 

𝜇𝑟
′ = 𝐶𝑗,𝑘 [

𝛼Γ(
𝑟+𝛽𝑘

𝜃
+ 1)

[𝛼(𝑗 + 1)]
𝑟+𝛽𝑘

𝜃
+1
+

𝜇𝛽Γ(
𝑟+𝛽(𝑘+1)

𝜃
)

𝜃[𝛼(𝑗 + 1)]
𝑟+𝛽(𝑘+1)

𝜃

],                                                (14) 

which completes the proof.  
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The central moments 𝜇𝑟 and cumulants 𝜅𝑟 of the 𝐸𝐴𝑊 distribution  can be determined 

from expression (8) as 𝜇𝑟 = ∑
𝑟
𝑚=0 (

𝑟
𝑚
)(−1)𝑚(𝜇1

′ )𝑚𝜇𝑟−𝑚
′  and 𝜅𝑟 = 𝜇𝑟

′ −

∑𝑟−1𝑚=1 (
𝑟−1
𝑚−1

)𝜅𝑚 𝜇𝑟−𝑚
′ , respectively, where 𝜅1 = 𝜇1

 ′, 𝜅2 = 𝜇2
′ − (𝜇1

′ )2, 𝜅3 = 𝜇3
′ − 3𝜇2

′  

𝜇1
 ′ + 2(𝜇1

′ )3, and 𝜅4 = 𝜇4
′ − 4𝜇1

′𝜇3
 ′ − 3(𝜇2

′ )2 + 12𝜇2
′ (𝜇1

′ )2 − 6(𝜇1
′ )4, etc. Additionally, 

the skewness and kurtosis can be calculated from the third and fourth standardized 

cumulants in the forms 𝑆𝐾 = 𝜅3/√𝜅2
3 and 𝐾𝑈 = 𝜅4/𝜅2

2, respectively. 
 

Theorem 2 The moment generating function of 𝐸𝐴𝑊 distribution is given by 

𝑀𝑋(𝑡) = ∑∞𝑗,𝑘,𝑟=0
𝑡𝑟

𝑟!
𝜆 (𝜆−1

𝑗
) (−1)𝑗+𝑘

[𝜇(𝑗+1)]𝑘

𝑘!
[

𝛼Γ(
𝑟+𝛽𝑘

𝜃
+1)

[𝛼(𝑗+1)]
𝑟+𝛽𝑘
𝜃

+1
+

𝜇𝛽Γ(
𝑟+𝛽(𝑘+1)

𝜃
)

𝜃[𝛼(𝑗+1)]
𝑟+𝛽(𝑘+1)

𝜃

].   (15) 

 

Proof We start with the well known definition of the moment generating function given by 

𝑀 𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∫

∞

0
𝑒𝑡𝑥𝑓𝐸𝐴𝑊(𝑥, 𝝓)𝑑𝑥, since ∑∞𝑟=0

𝑡𝑟

𝑟!
𝑥𝑟𝑓(𝑥) converges and each 

term is integrable for all 𝑡 close to 0, then we can rewrite the moment generating 

function as 𝑀 𝑋(𝑡) = ∑∞𝑟=0
𝑡𝑟

𝑟!
𝐸(𝑋𝑟) by replacing 𝐸(𝑋𝑟). Hence using (8) the MGF of 

𝐸𝐴𝑊 distribution is given by 

𝑀 𝑋
(𝑡) = ∑∞𝑗,𝑘,𝑟=0

𝑡𝑟

𝑟!
𝜆 (𝜆−1

𝑗
) (−1)𝑗+𝑘

[𝜇(𝑗+1)]𝑘

𝑘!
[

𝛼Γ(
𝑟+𝛽𝑘

𝜃
+1)

[𝛼(𝑗+1)]
𝑟+𝛽𝑘
𝜃

+1
+

𝜇𝛽Γ(
𝑟+𝛽(𝑘+1)

𝜃
)

𝜃[𝛼(𝑗+1)]
𝑟+𝛽(𝑘+1)

𝜃

].  

which completes the proof. 
 

Similarly, the characteristic function of the 𝐸𝐴𝑊 distribution becomes 𝜙 𝑋(𝑡) = 𝑀 𝑋(𝑖𝑡) 

where 𝑖 = √−1 is the unit imaginary number. 

3.3. Conditional Moments 

The main application of the first incomplete moment refers to the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance 

and medicine. The answers to many important questions in economics require more than 

just knowing the mean of the distribution, but its shape as well. This is obvious not only 

in the study of econometrics but in other areas as well. For lifetime models, it is also of 

interest to find the conditional moments and the mean residual lifetime function. The 

conditional moments for 𝐸𝐴𝑊 distribution is given by 

𝜐𝑠 = 𝐸(𝑋
𝑠|𝑋 > 𝑡) = ∫

∞

𝑡

𝑥𝑠𝑓𝐸𝐴𝑊(𝑥, 𝝓)𝑑𝑥. 

                                   = 𝐶𝑗,𝑘∫
∞

𝑡

(𝛼𝜃𝑥𝑠+𝛽𝑘+𝜃−1 + 𝜇𝛽𝑥𝑠+𝛽(𝑘+1)−1)𝑒−(𝑗+1)𝛼𝑥
𝜃
𝑑𝑥. 

                                  = 𝐶𝑗,𝑘 [
𝛼Γ(

𝑠+𝛽𝑘

𝜃
+ 1, (𝑗 + 1)𝛼𝑡𝜃)

[𝛼(𝑗 + 1)]
𝑠+𝛽𝑘

𝜃
+1

+
𝜇𝛽Γ(

𝑠+𝛽(𝑘+1)

𝜃
, (𝑗 + 1)𝛼𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝑠+𝛽(𝑘+1)

𝜃

].      (16) 

where Γ(𝑠, 𝑡) = ∫
∞

𝑡
𝑥𝑠−1𝑒−𝑥𝑑𝑥 is the upper incomplete gamma function. The mean 

residual lifetime function is given by 

𝜇(𝑡) = 𝐸(𝑋|𝑋 > 𝑡) − 𝑡 = 𝐶𝑗,𝑘 [
𝛼Γ(

𝛽𝑘+1

𝜃
+1,(𝑗+1)𝛼𝑡𝜃)

[𝛼(𝑗+1)]
𝑠+𝛽𝑘
𝜃

+1
+
𝜇𝛽Γ(

𝛽(𝑘+1)+1

𝜃
,(𝑗+1)𝛼𝑡𝜃)

𝜃[𝛼(𝑗+1)]
𝑠+𝛽(𝑘+1)

𝜃

] − 𝑡.    (17) 
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3.4. Quantile Function 

The quantile function (qf) of 𝑋 is obtained by inverting (3), but there is no colsed form 

for the qf of 𝐸𝐴𝑊 distribtion. The 𝑝𝑡ℎ  quantail of the 𝐸𝐴𝑊 distribtion can be obtained 

by numerically solving the following equaiton for 𝑥 

ln (1 − 𝑝
1

𝜆) + 𝛼𝑥𝜃 + 𝜇𝑥𝛽 = 0.                                                                                    (18) 

 

One can simulate the 𝐸𝐴𝑊 random variable with 𝝓 = (𝛼 , 𝜃, 𝜇, 𝛽 , 𝜆)𝑇 by: 

1. Generate 𝑈~𝑛𝑢𝑖𝑓𝑜𝑟𝑚(0,1). 

2. Put 𝑝 = 𝑈 in equation (18). 

3. Solve equation (18) numerically for 𝑥. 

 

The median can be calculated by putting 𝒑 = 𝟎. 𝟓 in equation (18), and solving it 

numerically for 𝒙. 

4. Residual life and Reversed Failure Rate Function 

Given that a component survives up to time 𝑡 ≥ 0, the residual life is the period beyond t 

until the time of failure and defined by the conditional random variable 𝑋 − 𝑡|𝑋 > 𝑡. In 

reliability, it is well known that the mean residual life function and ratio of two 

consecutive moments of residual life determine the distribution uniquely (Gupta and 

Gupta, 1983). Therefore, we obtain the 𝑟𝑡ℎ  order moment of the residual lifetime can be 

obtained via the general formula 

𝜇𝑟(𝑡) = 𝐸((𝑋 − 𝑡)𝑟|𝑋 > 𝑡) =
1

𝐹(𝑡)
∫
∞

𝑡

(𝑥 − 𝑡)𝑟𝑓(𝑥, 𝜙)𝑑𝑥, 𝑟 ≥ 1. 

 

Applying the binomial expansion of (𝑥 − 𝑡)𝑟 into the above formula, we get 

𝜇𝑟(𝑡) =
1

𝐹(𝑡)
∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
)∫

∞

𝑡

𝑥𝑟−𝑑𝑓(𝑥)𝑑𝑥. 

=
𝐶𝑗,𝑘

𝐹(𝑡)
∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
)∫

∞

𝑡

(𝛼𝜃𝑥𝑟+𝛽𝑘+𝜃−𝑑−1 + 𝜇𝛽𝑥𝑟+𝛽(𝑘+1)−𝑑−1)𝑒−(𝑗+1)𝛼𝑥
𝜃
𝑑𝑥. 

=
𝐶𝑗,𝑘

𝐹(𝑡)
∑𝑟𝑑=0 (−𝑡)

𝑑 (
𝑟
𝑑
) [

𝛼Γ(
𝑟+𝛽𝑘−𝑑

𝜃
+1,(𝑗+1)𝛼𝑡𝜃)

[𝛼(𝑗+1)]
𝑟+𝛽𝑘−𝑑

𝜃
+1

+
𝜇𝛽Γ(

𝑟+𝛽(𝑘+1)−𝑑

𝜃
,(𝑗+1)𝛼𝑡𝜃)

𝜃[𝛼(𝑗+1)]
𝑟+𝛽(𝑘+1)−𝑑

𝜃

].  (19) 

 

The mean residual life (MRL) of the 𝐸𝐴𝑊 distribution is given by 

𝜇(𝑡) =
𝐶𝑗,𝑘

𝐹(𝑡)
[
𝛼Γ (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝛼𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽Γ (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝛼𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

] − 𝑡. 

 

The variance of the residual life of the 𝐸𝐴𝑊 distribution can be obtained easily by using 

𝜇2(𝑡) and 𝜇(𝑡). 
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On the other hand, we analogously discuss the reversed residual life and some of its 

properties. The reversed residual life can be defined as the conditional random variable 

𝑡 − 𝑋|𝑋 ≤ 𝑡 which denotes the time elapsed from the failure of a component given that 

its life is less than or equal to 𝑡. This random variable may also be called the inactivity 

time (or time since failure); for more details you may see (Kundu and Nanda, 2010).  

 

Also, in reliability, the mean reversed residual life and ratio of two consecutive moments 

of reversed residual life characterize the distribution uniquely. The reversed failure (or 

reversed hazard) rate function is given by Equation (7). The 𝑟𝑡ℎ  order moment of the 

reversed residual life can be obtained by the well known formula 

𝑚𝑟(𝑡) = 𝐸((𝑡 − 𝑋)
𝑟|𝑋 ≤ 𝑡) =

1

𝐹(𝑡)
∫
𝑡

0

(𝑡 − 𝑥)𝑟𝑓(𝑥, 𝜙)𝑑𝑥, 𝑟 ≥ 1. 

 

Applying the binomial expansion of (𝑡 − 𝑥)𝑟 into the above formula gives 

𝑚𝑟(𝑡) =
𝑤𝑖,𝑗,𝑘
𝐹(𝑡)

∑

𝑟

𝑑=0

(−𝑡)𝑑 (
𝑟
𝑑
)∫

𝑡

0

(𝛼𝜃𝑥𝑟+𝛽𝑘+𝜃−𝑑−1 + 𝜇𝛽𝑥𝑟+𝛽(𝑘+1)−𝑑−1)𝑒−(𝑗+1)𝛼𝑥
𝜃
𝑑𝑥. 

=
𝐶𝑗,𝑘

𝐹(𝑡)
∑𝑟𝑑=0 (−𝑡)

𝑑 (
𝑟
𝑑
) [

𝛼𝜁(
𝑟+𝛽𝑘−𝑑

𝜃
+1,(𝑗+1)𝛼𝑡𝜃)

[𝛼(𝑗+1)]
𝑟+𝛽𝑘−𝑑

𝜃
+1

+
𝜇𝛽𝜁(

𝑟+𝛽(𝑘+1)−𝑑

𝜃
,(𝑗+1)𝛼𝑡𝜃)

𝜃[𝛼(𝑗+1)]
𝑟+𝛽(𝑘+1)−𝑑

𝜃

].  (20) 

where 𝜁(𝑠, 𝑡) = ∫
𝑡

0
𝑥𝑠−1𝑒−𝑥𝑑𝑥 is the lower incomplete gamma function. Thus, the mean 

of the reversed residual life of the 𝐸𝐴𝑊 distribution is given by 

𝑚(𝑡) = 𝑡 −
𝐶𝑗,𝑘
𝐹(𝑡)

[
𝛼𝜁 (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝛼𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽𝜁 (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝛼𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

].      (21) 

 

Using 𝑚(𝑡) and 𝑚2(𝑡) one can obtain the variance and the coefficient of variation of the 

reversed residual life of the 𝐸𝐴𝑊 distribution. 

4.1. Bonferroni and Lorenz Curves 

In this subsection we proposed the Bonferroni and Lorenz Curves. The Bonferroni and 

Lorenz curves (Bonferroni, 1930) and the Bonferroni and Gini indices have applications 

not only in economics to study income and poverty, but also in other fields like 

reliability, demography, insurance and medicine. The Bonferroni and Lorenz curves are 

defined by 

𝐵(𝑝) =
1

𝑝𝜇
∫
𝑞

0

𝑥𝑓(𝑥)𝑑𝑥 =
𝐶𝑗,𝑘
𝑝𝜇

[
𝛼𝜁 (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝑞𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽𝜁 (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝑞𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

]       (22) 

and 

𝐿(𝑝) =
1

𝜇
∫
𝑞

0
𝑥𝑓(𝑥)𝑑𝑥 =

𝐶𝑗,𝑘

𝜇
[
𝛼𝜁(

𝛽𝑘+1

𝜃
+1,(𝑗+1)𝑞𝑡𝜃)

[𝛼(𝑗+1)]
𝛽𝑘+1
𝜃

+1
+
𝜇𝛽𝜁(

𝛽(𝑘+1)+1

𝜃
,(𝑗+1)𝑞𝑡𝜃)

𝜃[𝛼(𝑗+1)]
𝛽(𝑘+1)+1

𝜃

].        (23) 

4.2. Mean deviation 

In statistics, mean deviation about the mean and mean deviation about the median 

measure the amount of scatter in a population. For random variable 𝑋 with pdf 𝑓(𝑥), 
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distribution function 𝐹(𝑥), mean 𝜇 = 𝐸(𝑋) and 𝑀 = Median (𝑋), the mean deviation 

about the mean and mean deviation about the median, are defined by 

𝛿1(𝑥) = ∫
∞

0

|𝑥 − 𝜇|𝑓(𝑥)𝑑𝑥 = 2𝜇𝐹(𝜇) − 2𝜇 + 2∫
∞

𝜇

𝑥𝑓(𝑥)𝑑𝑥 

and 

𝛿2(𝑥) = ∫
∞

0

|𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥 = 2𝑀𝐹(𝑀) −𝑀 − 𝜇 + 2∫
∞

𝑀

𝑥𝑓(𝑥)𝑑𝑥 

respectively, if 𝑋 is 𝐸𝐴𝑊 random variable then 

∫
∞

𝜇

𝑥𝑓(𝑥)𝑑𝑥 = 𝐶𝑗,𝑘 [
𝛼Γ (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝜇𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽Γ (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝜇𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

]   (24) 

and 

∫
∞

𝑀

𝑥𝑓(𝑥)𝑑𝑥 = 𝐶𝑗,𝑘 [
𝛼Γ (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝑀𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽Γ (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝑀𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

] , (25) 

so that 

𝛿1(𝑥) = 2𝜇𝐹(𝜇) + 2𝐶𝑗,𝑘 [
𝛼Γ (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝜇𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽Γ (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝜇𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

] − 2𝜇 

and 

𝛿2(𝑥) = −𝜇 + 2𝐶𝑗,𝑘 [
𝛼Γ (

𝛽𝑘+1

𝜃
+ 1, (𝑗 + 1)𝑀𝑡𝜃)

[𝛼(𝑗 + 1)]
𝛽𝑘+1

𝜃
+1

+
𝜇𝛽Γ (

𝛽(𝑘+1)+1

𝜃
, (𝑗 + 1)𝑀𝑡𝜃)

𝜃[𝛼(𝑗 + 1)]
𝛽(𝑘+1)+1

𝜃

]. 

5. Maximum Likelihood Estimation 

Statistical inference can be carried out in three different ways: point estimation, interval 

estimation and hypothesis testing. Several approaches for parameter point estimation 

were proposed in the literature but the maximum likelihood method is the most 

commonly employed. The 𝑀𝐿𝐸𝑠 enjoy desirable properties and can be used when 

constructing confidence intervals and regions and also in test statistics. Here, we 

determine the maximum likelihood estimates (𝑀𝐿𝐸𝑠) of the parameters of the 𝐸𝐴𝑊 

distribution from complete samples only. Let 𝑥1, . . . , 𝑥𝑛 be a random sample of size 𝑛 

from the 𝐸𝐴𝑊 distribution given by (4). Let 𝝓 = (𝛼, 𝜃, 𝜇, 𝛽, 𝜆)𝑇 be 5 × 1 vector of 

parameters. The total log-likelihood function for 𝝓 is given by 

ℓ𝑛 = ℓ𝑛(𝝓) = 𝑛log𝜆 +∑
𝑛

𝑖=1
log(𝛼𝜃𝑥𝑖

𝜃−1 + 𝜇𝛽𝑥𝑖
𝛽−1

) − 𝛼∑
𝑛

𝑖=1
𝑥𝑖
𝜃 − 𝜇∑

𝑛

𝑖=1
𝑥𝑖
𝛽

 

                 +(𝜆 − 1)∑𝑛𝑖=1 log [1 − 𝑒
−𝛼𝑥𝑖

𝜃−𝜇𝑥𝑖
𝛽

].                                   (26) 

 

The log-likelihood can be maximized either directly by using the SAS program or R-

language (2018) or by solving the nonlinear likelihood equations obtained by 

differentiating (26). The associated components of the score function 𝑈𝑛(𝝓) =

[
∂ℓ𝑛

∂𝛼
,
∂ℓ𝑛

∂𝜃
,
∂ℓ𝑛

∂𝜇
,
∂ℓ𝑛

∂𝛽
,
∂ℓ𝑛

∂𝜆
]
𝑇

 are 
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∂ℓ𝑛
∂𝛼

=∑
𝑛

𝑖=1

𝜃𝑥𝑖
𝜃−1

𝛼𝜃𝑥𝑖
𝜃−1 + 𝜇𝛽𝑥𝑖

𝛽−1
−∑

𝑛

𝑖=1
𝑥𝑖
𝜃 + (𝜆 − 1)∑

𝑛

𝑖=1

𝑥𝑖
𝜃𝑒−𝛼𝑥

𝜃−𝜇𝑥𝛽

1 − 𝑒−𝛼𝑥
𝜃−𝜇𝑥𝛽

, 

∂ℓ𝑛
∂𝜃

= 𝛼∑
𝑛

𝑖=1

𝑥𝑖
𝜃−1(𝜃 ln(𝑥𝑖) + 1)

𝛼𝜃𝑥𝑖
𝜃−1 + 𝜇𝛽𝑥

𝑖

𝛽−1
− 𝛼∑

𝑛

𝑖=1
𝑥𝑖
𝜃 ln(𝑥𝑖) + 𝛼(𝜆 − 1)∑

𝑛

𝑖=1

𝑥𝑖
𝜃 ln(𝑥𝑖) 𝑒

−𝛼𝑥𝑖
𝜃−𝜇𝑥𝑖

𝛽

1 − 𝑒−𝛼𝑥𝑖
𝜃−𝜇𝑥

𝑖
𝛽

, 

∂ℓ𝑛
∂𝜇

=∑
𝑛

𝑖=1

𝛽𝑥𝑖
𝛽−1

𝛼𝜃𝑥𝑖
𝜃−1 + 𝜇𝛽𝑥𝑖

𝛽−1
−∑

𝑛

𝑖=1
𝑥𝑖
𝛽
+ (𝜆 − 1)∑

𝑛

𝑖=1

𝑥𝑖
𝛽
𝑒−𝛼𝑥𝑖

𝜃−𝜇𝑥𝑖
𝛽

1 − 𝑒−𝛼𝑥𝑖
𝜃−𝜇𝑥

𝑖
𝛽 , 

∂ℓ𝑛
∂𝛽

= 𝜇∑
𝑛

𝑖=1

𝑥𝑖
𝛽−1(𝛽 ln(𝑥𝑖) + 1)

𝛼𝜃𝑥𝑖
𝜃−1 + 𝜇𝛽𝑥𝑖

𝛽−1
− 𝜇∑

𝑛

𝑖=1
𝑥𝑖
𝛽
ln(𝑥𝑖) + 𝜇(𝜆 − 1)∑

𝑛

𝑖=1

𝑥𝑖
𝛽
ln(𝑥𝑖) 𝑒

−𝛼𝑥𝑖
𝜃−𝜇𝑥𝑖

𝛽

1 − 𝑒−𝛼𝑥𝑖
𝜃−𝜇𝑥

𝑖
𝛽  

 and 
∂ℓ𝑛
∂𝜆

=
𝑛

𝜆
+∑

𝑛

𝑖=1
log [1 − 𝑒−𝛼𝑥𝑖

𝜃−𝜇𝑥𝑖
𝛽

].                                                                        (27) 

 

The maximum likelihood estimation (𝑀𝐿𝐸) of 𝝓, say �̂�, is obtained by solving the 

nonlinear system 𝑈𝑛(𝝓) = 0. These equations cannot be solved analytically, and 

statistical software can be used to solve them numerically via iterative methods. We can 

use iterative techniques such as a Newton–Raphson type algorithm to obtain the estimate 

�̂�. For interval estimation and hypothesis tests on the model parameters, we require the 

information matrix. The 5 × 5 observed information matrix is given by 

𝐼𝑛(𝝓) = −

(

  
 

𝐼𝛼𝛼  
𝐼𝜃𝛼  
𝐼𝜇𝛼  

𝐼𝛽𝛼
𝐼𝜆𝛼

𝐼𝛼𝜃  
𝐼𝜃𝜃
𝐼𝜇𝜃
𝐼𝛽𝜃
𝐼𝜆𝜃

𝐼𝛼𝜇  

𝐼𝜃𝜇
𝐼𝜇𝜇
𝐼𝛽𝜇
𝐼𝜆𝜇

𝐼𝛼𝛽  

𝐼𝜃𝛽
𝐼𝜇𝛽
𝐼𝛽𝛽
𝐼𝜆𝛽

𝐼𝛼𝜆
𝐼𝜃𝜆
𝐼𝜇𝜆
𝐼𝛽𝜆
𝐼𝜆𝜆)

  
 
                                                                              (28) 

whose elements are given in the Appendix. Applying the usual large sample 

approximation, 𝑀𝐿𝐸 of 𝝓, i.e �̂� can be treated as being approximately 𝑁5(𝝓, 𝐽𝑛(𝝓)
−1), 

where 𝐽𝑛(𝝓) = 𝐸[𝐼𝑛(𝝓)]. Under conditions that are fulfilled for parameters in the 

interior of the parameter space but not on the boundary, the asymptotic distribution of 

√𝑛(�̂� − 𝝓) is 𝑁5(0, 𝐽(𝝓)
−1), where 𝐽(𝝓) = lim 𝑛→∞𝑛

−1𝐼𝑛(𝝓) is the unit information 

matrix. This asymptotic behavior remains valid if 𝐽(𝝓) is replaced by the average sample 

information matrix evaluated at �̂�, say 𝑛−1𝐼𝑛(�̂�). The estimated asymptotic multivariate 

normal 𝑁5(𝝓, 𝐼𝑛(�̂�)
−1) distribution of �̂� can be used to construct approximate 

confidence intervals for the parameters and for the hazard rate and survival functions. An 

100(1 − 𝛾)% asymptotic confidence interval for each parameter 𝝓𝑟 is given by 

𝐴𝐶𝐼𝑟 = (�̂�𝑟 − 𝑧𝛾
2

√𝐼𝑟�̂� , �̂�𝑟 + 𝑧𝛾
2

√𝐼𝑟�̂�) 

where 𝑧𝛾 is the upper 100𝛾𝑡ℎ percentile of the standard normal distribution.  

6. Simulation Study 

To test the validating of the theoretical results in Section 5, we produced simulations by 

R statistical package, by generating 2,000 samples of sizes 𝑛 = {50,65,80,95,110,125, 
140,155,170,185,200,215} from the 𝐸𝐴𝑊 distribution by (18), with true parametric 

values of 𝝓:  (𝛼 = 1.5, 𝜃 = 5.0, 𝜇 = 0.5, 𝛽 = 0.8, 𝜆 = 2.5)𝑇 and (𝛼 = 1.5, 𝜃 = 3.0, 𝜇 =
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0.5, 𝛽 = 0.8, 𝜆 = 1.0)𝑇. The average of absolute value of biases, |𝐵𝑖𝑎𝑠(�̂�)| =
1

𝑁
∑ |�̂� − 𝝓|𝑛
𝑖=1 , and the mean square error of the estimates, 𝑀𝑆𝐸(�̂�) =

1

𝑁
∑ (�̂� − 𝝓)

2𝑛
𝑖=1 , 

are computed. 

 

These results are reported in Table 2. We can see that the values of |𝐵𝑖𝑎𝑠(�̂�)| and 

𝑀𝑆𝐸(�̂�) decrease as sample size increases. 

Table  2:   Average values of |𝐵𝑖𝑎𝑠(�̂�)| and the corresponding 𝑀𝑆𝐸𝑠(�̂�) 

𝝓 = (𝛼 = 1.5, 𝜃 = 5.0, 𝜇 = 0.5, 𝛽 = 0.8, 𝜆 = 2.5)𝑇  

 

𝑛 

|𝐵𝑖𝑎𝑠(�̂�)| 𝑀𝑆𝐸(�̂�) 

�̂� 𝜃 �̂� �̂� �̂� �̂� 𝜃 �̂� �̂� �̂� 

50 0.57616 4.29814 0.51799 0.86305 0.30088 0.55355 87.53188 0.49802 1.32654 0.14576 

65 0.48383 3.09122 0.43974 0.73273 0.25280 0.42795 52.16778 0.39603 1.04794 0.10306 

80 0.43713 2.52463 0.39121 0.65407 0.22458 0.36226 37.76243 0.32699 0.86033 0.07982 

95 0.40471 2.13125 0.36282 0.61452 0.21061 0.31778 28.84269 0.28864 0.77003 0.07079 

110 0.34544 1.49443 0.30870 0.52898 0.19748 0.23596 13.85096 0.21070 0.57212 0.06151 

125 0.33062 1.44014 0.29469 0.50771 0.18231 0.22228 14.87032 0.19975 0.54232 0.05251 

140 0.29282 1.11273 0.25848 0.45386 0.17255 0.18037 7.81345 0.15810 0.43699 0.04803 

155 0.26793 0.92097 0.23486 0.40887 0.15943 0.14479 4.48580 0.12575 0.35057 0.04033 

170 0.25577 0.85340 0.22479 0.40200 0.14981 0.13523 4.40740 0.11806 0.34442 0.03642 

185 0.24217 0.73858 0.20989 0.37514 0.15079 0.11709 2.48610 0.09841 0.28683 0.03648 

200 0.24137 0.78011 0.21059 0.37323 0.14123 0.11874 3.27028 0.10093 0.28895 0.03175 

215 0.21879 0.64552 0.18912 0.34422 0.13317 0.09203 1.98047 0.07660 0.23179 0.02881 

𝝓 = (𝛼 = 1.5, 𝜃 = 3.0, 𝜇 = 0.5, 𝛽 = 0.8, 𝜆 = 1.0)𝑇  

 

𝑛 

|𝐵𝑖𝑎𝑠(�̂�)| 𝑀𝑆𝐸(�̂�) 

�̂� 𝜃 �̂� �̂� �̂� �̂� 𝜃 �̂� �̂� �̂� 

50 0.47219 2.35138 0.3733 0.2904 0.12029 0.38673 44.14962 0.27557 0.14808 0.02723 

65 0.40947 1.47379 0.31196 0.24059 0.10645 0.29333 15.98097 0.19662 0.10142 0.02247 

80 0.34597 1.02278 0.27689 0.21726 0.09853 0.21681 6.30872 0.15462 0.08286 0.02118 

95 0.31842 0.83252 0.25594 0.19913 0.09329 0.18324 3.57361 0.13048 0.06957 0.02142 

110 0.2999 0.71863 0.23043 0.18095 0.08775 0.15585 3.38734 0.10583 0.05707 0.02222 

125 0.26463 0.60621 0.21624 0.17205 0.08726 0.12614 1.77998 0.09061 0.05101 0.02493 

140 0.24863 0.53581 0.19605 0.15689 0.08218 0.11054 1.25309 0.07441 0.04233 0.02265 

155 0.24779 0.50124 0.19101 0.15191 0.0854 0.10649 0.81173 0.07087 0.04023 0.02901 

170 0.22066 0.43431 0.17234 0.13991 0.07958 0.08586 0.62951 0.05631 0.03333 0.02445 

185 0.21615 0.40192 0.16582 0.13332 0.07844 0.07963 0.39007 0.05227 0.03092 0.0258 

200 0.20041 0.38007 0.15828 0.13092 0.07134 0.06799 0.31900 0.04586 0.02849 0.01999 

215 0.1949 0.35905 0.1501 0.12247 0.07823 0.06487 0.29628 0.04112 0.02526 0.02834 

7. Application 

In this section we illustrate the superiority of the new distribution as compared to some of 

its submodels and also to the alternative distributions. For the data set, the estimates of 

the parameters of the distributions and information criterion statistics are calculated. 

Here, we provide application to real data in order to illustrate the potentiality of the 𝐸𝐴𝑊 

model. The measures of goodness-of-fit including the log-likelihood function evaluated 

at the MLEs, Cramer–von Mises (𝑊∗), Anderson-Darling (𝐴∗) and Kolmogorov-Smirnov 

(𝐾 − 𝑆) statistic with its 𝑝-value are calculated to compare the fitted models. In general, 
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the smallest the values of 𝑊∗, 𝐴∗ and  𝐾 − 𝑆 statistics, and the largest 𝐾 − 𝑆 𝑝-value, is 

considered the best fit to the data. The required computations are carried out using the 𝑅 

software. 

 

The data used in this research is corresponding to remission times (in months) of a 

random sample of 128 bladder cancer patients given in Lee and Wang (2003). The data is 

given as follows: 

 

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02,  

2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62,  2.64, 2.69,  2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 

3.31,  3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 

4.50,  4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 

6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 

7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 

11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 

14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 

25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 

Table  3:   The statistics: −𝟐𝓵𝟏𝟐𝟖(�̂�), 𝑾
∗ and 𝑨∗ for the bladder cancer data 

Model −2ℓ128(�̂�) 𝑊∗ 𝐴∗ 𝐾 − 𝑆 𝑝-value 

𝑬𝑨𝑾  819.746 0.0235 0.1523 0.0349 0.9976 

𝑲𝒘 −𝑴𝑾  821.504 0.0457 0.3007 0.0456 0.9530 

𝑴𝑾  828.175 0.1314 0.7864 0.0700 0.5575 

𝑾  828.174 0.1314 0.7865 0.0700 0.5570 

𝑬𝑬𝒙  826.155 0.1122 0.6741 0.0725 0.5113 

𝑬𝒙  828.684 0.1193 0.7160 0.0846 0.3184 

𝑬𝑾  821.360 0.0437 0.2885 0.0450 0.9576 

 𝑹 982.531 0.4664 2.7300 0.3521 0.0000 

Table 4:   𝑴𝑳𝑬𝒔 and their standard errors (in parentheses) for the bladder cancer data 

Model  ML Estimates 

𝑬𝑨𝑾  
�̂� =0.8101 
(0.5901) 

𝜃 =0.5299 

(0.1483) 

�̂� =2.1056 
(4.1206) 

�̂� =0.0157 
(0.0862) 

�̂� =51.7587 
(222.2643) 

𝑲𝒘 −𝑴𝑾  
�̂� =3.9883 

(4.3741) 
�̂� =2.0482 

(5.7773) 

�̂� =0.5346 

(0.5122) 

𝛾 =0.4842 

(0.4217) 
�̂� =0.0010 

(0.0067) 

𝑴𝑾  
�̂� =0.0010 

(0.3076) 

�̂� =0.0929 

(0.2946) 
�̂� =1.0481 

(0.1171) 
------------ ------------ 

𝑾  
�̂� =0.0939 

(0.0191) 
�̂� =1.0478 

(0.0676) 
------------ ------------ ------------ 

𝑬𝑬𝒙  
�̂� =0.1212 
(0.0136) 

�̂� =1.2180 
(0.1488) 

------------ ------------ ------------ 

𝑬𝒙  
�̂� =0.1068 

(0.0094) 
------------ ------------ ------------ ------------ 

𝑬𝑾  
�̂� =0.4538 

(0.2398) 
�̂� =0.6544 

(0.1346) 

�̂� =2.7965 

(1.2633) 
------------ ------------ 

 𝑹 
�̂� =0.0051 
(0.0004) 

------------ ------------ ------------ ------------ 
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Figure 3 displays: (𝑎) the estimated densities of the 𝐸𝐴𝑊, 𝐾𝑤 −𝑀𝑊, 𝑀𝑊, 𝑊, 𝐸𝐸, 𝐸,  
𝐸𝑊, 𝐿 and 𝑅 distributions for the data, and (𝑏) the estimated cdf from the fitted the 

𝐸𝐴𝑊, Kumaraswamy modified Weibull distribution (𝐾𝑤 −𝑀𝑊) (Cordeiro et al., 

(2014)), 𝑀𝑊, 𝑊, 𝐸𝐸𝑥 , 𝐸𝑥, 𝐸𝑊 and 𝑅 distributions and the empirical cdf of the data set. 

These results indicate that the 𝐸𝐴𝑊 model has the lowest values of 𝑊∗, 𝐴∗ and  𝐾 − 𝑆 

statistics and the largest 𝐾 − 𝑆 𝑝-value, among the fitted distributions, and therefore it 

could be chosen as the best model. 

 

 

  

(𝑎)                                                                                       (𝑏) 

Figure 3: The estimated densities (𝑎) and the estimated cdf (𝑏) of the 𝑬𝑨𝑾 distribution and other 

estimated distributions, for the bladder cancer data. 
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Appendix 

Let 𝑆(𝑥) = 𝑒−(𝛼𝑥
𝜃+𝜇𝑥𝛽), the entries of the matrix, 𝐼𝑛(𝝓), in (28), are 

 

𝐼𝛼𝛼 =
∂2ℓ𝑛
∂𝛼2

= 𝜆(1 − 𝑆(𝑥))
𝜆−3
𝑆(𝑥) 𝑥2𝜃−1 [(𝜃(𝑥𝜃𝛼 − 2) + 𝛽𝜇𝑥𝛽) + 𝜆𝑆2(𝑥)(𝜃(𝛼𝜆𝑥𝜃 − 2) + 𝛽𝜆𝜇𝑥𝛽)

+ 𝑆(𝑥) (𝜃 (2(1 + 𝜆) + 𝛼𝑥𝜃(1 − 3𝜆)) + 𝜇𝛽(1 − 3𝜆)𝑥𝛽)], 

 

𝐼𝜃𝜃 =
∂2ℓ𝑛
∂𝜃2

= 𝛼𝜆 (1 − 𝑆(𝑥))
𝜆−3
log(𝑥)𝑆(𝑥)𝑥𝜃−1 [2(1 − 𝑆(𝑥)) ((1− 𝛼𝑥𝜃) + 𝑆(𝑥)(𝛼𝜆𝑥𝜃 − 1))

+ log(𝑥) (𝜃 [𝑆2(𝑥) + (1 + 𝛼𝑥𝜃(𝛼𝑥𝜃 − 3)) + 𝛼𝜆𝑥𝜃𝑆2(𝑥)(𝛼𝜆𝑥𝜃 − 3)

+ 𝑆(𝑥)(𝛼𝑥𝜃(3(𝜆 + 1) + 𝛼(1 − 3𝜆)𝑥𝜃) − 2)]

+ 𝛽𝜇𝑥𝛽[(𝛼𝑥𝜃 − 1) + 𝜆(𝛼𝜆𝑥𝜃 − 1) + 𝑆(𝑥)(1 + 𝜆 + 𝛼(1 − 3𝜆)𝑥𝜃)])], 

 

𝐼𝜇𝜇 =
∂2ℓ𝑛
∂𝜇2

= 𝜆(1 − 𝑆(𝑥))
𝜆−3

𝑆(𝑥)𝑥2𝛽−1 [(𝛽(𝜇𝑥𝛽 − 2) + 𝛼𝜃𝑥𝜃) + 𝜆𝑆2(𝑥)(𝛽(𝜆𝜇𝑥𝛽 − 2) + 𝛼𝜃𝜆𝑥𝜃)

+ 𝑆(𝑥) (𝛽 (2(1 + 𝜆) + 𝜇𝑥𝛽(1 − 3𝜆)) + 𝛼𝜃(1 − 3𝜆)𝑥𝜃)], 

 

𝐼𝛽𝛽 =
∂2ℓ𝑛
∂𝛽2

= 𝜇𝜆 (1 − 𝑆(𝑥))
𝜆−3
log(𝑥)𝑆(𝑥)𝑥𝛽−1 [2(1 − 𝑆(𝑥)) ((1 − 𝜇𝑥𝛽) + 𝑆(𝑥)(𝜇𝜆𝑥𝛽 − 1))

+ log(𝑥) (𝛽 [𝑆2(𝑥) + (1 + 𝜇𝑥𝛽(𝜇𝑥𝛽 − 3)) + 𝜇𝜆𝑥𝛽𝑆2(𝑥)(𝜇𝜆𝑥𝛽 − 3)

+ 𝑆(𝑥)(𝜇𝑥𝛽(3(𝜆 + 1) + 𝜇(1 − 3𝜆)𝑥𝛽) − 2)]

+ 𝛼𝜃𝑥𝜃[(𝜇𝑥𝛽 − 1) + 𝜆(𝜇𝜆𝑥𝛽 − 1) + 𝑆(𝑥)(1 + 𝜆 + 𝜇(1 − 3𝜆)𝑥𝛽)])], 

 

𝐼𝜆𝜆 =
∂2ℓ𝑛
∂𝜆2

= 𝑆(𝑥)𝑥−1(1 − 𝑆(𝑥))
𝜆−1
(𝛼𝜃𝑥𝜃 + 𝛽𝜇𝑥𝛽) log(1 − 𝑆(𝑥)) (𝜆 log(1 − 𝑆(𝑥)) + 2), 

 

𝐼𝛼𝜃 =
∂2ℓ𝑛
∂𝛼 ∂𝜃

 

       =
∂2ℓ𝑛
∂𝜃 ∂𝛼

= 𝜆𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−3

𝑥𝜃−1 [(1 − 𝑆(𝑥)) ((1− 𝛼𝑥𝜃) + 𝑆(𝑥)(𝛼𝜆𝑥𝜃 − 1))

+ log(𝑥) (𝜃 [𝑆2(𝑥) + (1 + 𝛼𝑥𝜃(𝛼𝑥𝜃 − 3)) + 𝑆2(𝑥)𝛼𝜆𝑥𝜃(𝛼𝜆𝑥𝜃 − 3)

+ 𝑆(𝑥) (𝛼𝑥𝜃 (3(1 + 𝜆) + 𝛼𝑥𝜃(1 − 3𝜆)) − 2)]

+ 𝛽𝜇𝑥𝛽 [(𝛼𝑥𝜃 − 1) + 𝜆𝑆2(𝑥)(𝛼𝜆𝑥𝜃 − 1) + 𝑆(𝑥) (1 + 𝜆 + 𝛼𝑥𝜃(1 − 3𝜆))])], 

 

𝐼𝛼𝜇 =
∂2ℓ𝑛
∂𝛼 ∂𝜇

 

       =
∂2ℓ𝑛
∂𝜇 ∂𝛼

= 𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−3
𝑥𝛽+𝜃−1𝜆 [((𝛼𝑥𝜃 − 1)𝜃 + 𝛽(−1 + 𝑥𝛽𝜇))

+ 𝑆(𝑥) (𝜃 (1 + 𝜆 + 𝑥𝜃𝛼(1 − 3𝜆)) + 𝛽 (1 + 𝜆 + 𝜇𝑥𝛽(1 − 3𝜆)))

+ 𝑆2(𝑥)𝜆 (𝜃(𝛼𝜆𝑥𝜃 − 1) + 𝛽(𝜆𝜇𝑥𝛽 − 1))], 

 

𝐼𝛼𝛽 =
∂2ℓ𝑛
∂𝛼 ∂𝛽
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       =
∂2ℓ𝑛
∂𝛽 ∂𝛼

= 𝜆𝜇𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−3
𝑥𝛽+𝜃−1 [(1 − 𝑆(𝑥))(𝜆𝑆(𝑥) − 1)

+ log(𝑥) ((𝜃(𝛼𝑥𝜃 − 1) + 𝛽(𝜇𝑥𝛽 − 1))

+ 𝑆(𝑥) (𝜃 (1 + 𝜆 + 𝛼𝑥𝜃(1 − 3𝜆)) + 𝛽 (1 + 𝜆 + 𝜇𝑥𝛽(1 − 3𝜆)))

+ 𝜆𝑆2(𝑥) (𝜃(𝛼𝜆𝑥𝜃 − 1) + 𝛽(𝜆𝜇𝑥𝛽 − 1)))], 

 

𝐼𝛼𝜆 =
∂2ℓ𝑛
∂𝛼 ∂𝜆

 

       =
∂2ℓ𝑛
∂𝜆 ∂𝛼

= −𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−2

𝑥𝜃−1 [𝜃 (𝑆(𝑥) + (𝛼𝑥𝜃 − 1) − 2𝛼𝜆𝑥𝜃𝑆(𝑥)) + 𝛽𝜇𝑥𝛽(1 − 2𝜆𝑆(𝑥))

− 𝜆 log(1 − 𝑆(𝑥)) (𝜃(𝛼𝑥𝜃(𝜆𝑆(𝑥) − 1) − 𝑆(𝑥) + 1) − 𝜇𝛽𝑥𝛽(1 − 𝜆𝑆(𝑥)))], 

 

𝐼𝜃𝜇 =
∂2ℓ𝑛
∂𝜃 ∂𝜇

 

       =
∂2ℓ𝑛
∂𝜇 ∂𝜃

= 𝛼𝜆𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−3
𝑥𝛽+𝜃−1 [(1 − 𝑆(𝑥))(𝜆𝑆(𝑥) − 1)

+ log(𝑥) ((𝜃(𝛼𝑥𝜃 − 1) + 𝛽(𝜇𝑥𝛽 − 1))

+ 𝑆(𝑥) (𝜃 (1 + 𝜆 + 𝛼𝑥𝜃(1 − 3𝜆)) + 𝛽 (1 + 𝜆 + 𝜇𝑥𝛽(1 − 3𝜆)))

+ 𝜆𝑆2(𝑥) (𝜃(𝛼𝜆𝑥𝜃 − 1) + 𝛽(𝜆𝜇𝑥𝛽 − 1)))], 

 

𝐼𝜇𝜆 =
∂2ℓ𝑛
∂𝜇 ∂𝜆

 

       =
∂2ℓ𝑛
∂𝜆 ∂𝜇

= −𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−2
𝑥𝛽−1 [𝛼𝜃𝑥𝜃(1 − 2𝜆𝑆(𝑥)) + 𝛽 (𝑆(𝑥)(1 − 2𝜆𝜇𝑥𝛽) + (𝜇𝑥𝛽 − 1))

+ 𝜆 log(1 − 𝑆(𝑥)) (𝑥𝜃𝛼𝜃(1 − 𝜆𝑆(𝑥)) − 𝛽 (𝑆(𝑥)(𝜆𝜇𝑥𝛽 − 1) + (1 − 𝜇𝑥𝛽)))], 

 

𝐼𝜃𝛽 =
∂2ℓ𝑛
∂𝜃 ∂𝛽

 

       =
∂2ℓ𝑛
∂𝛽 ∂𝜃

= 𝛼𝜆𝜇𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−1

log(𝑥) 𝑥𝛽+𝜃−1 [2(1 − 𝑆(𝑥))(𝜆𝑆(𝑥) − 1)

+ log(𝑥) ((𝜃(𝛼𝑥𝜃 − 1) + 𝛽(𝜇𝑥𝛽 − 1))

+ 𝑆(𝑥) (𝜃 (1 + 𝜆 + 𝛼𝑥𝜃(1 − 3𝜆)) + 𝛽 (1 + 𝜆 + 𝜇𝑥𝛽(1 − 3𝜆)))

+ 𝜆𝑆2(𝑥) (𝜃(𝛼𝜆𝑥𝜃 − 1) + 𝛽(𝜆𝜇𝑥𝛽 − 1)))], 

 

𝐼𝜃𝜆 =
∂2ℓ𝑛
∂𝜃 ∂𝜆
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       =
∂2ℓ𝑛
∂𝜆 ∂𝜃

= 𝛼𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−2
𝑥𝜃−1 [1 − 𝑆(𝑥)(𝜃 log(𝑥) + 1)

+ log(𝑥) ((𝜃(1 − 𝛼𝑥𝜃) − 𝛽𝜇𝑥𝛽) + 2𝜆𝑆(𝑥)(𝛼𝜃𝑥𝜃 + 𝛽𝜇𝑥𝛽))

+ 𝜆 log(1 − 𝑆(𝑥)) (1 − 𝑆(𝑥)

+ log(𝑥) (𝜃 ((1− 𝛼𝑥𝜃) + 𝑆(𝑥)(𝛼𝜆𝑥𝜃 − 1)) − 𝜇𝛽𝑥𝛽(1 − 𝜆𝑆(𝑥))))], 

 

𝐼𝜇𝛽 =
∂2ℓ𝑛
∂𝜇 ∂𝛽

 

       =
∂2ℓ𝑛
∂𝛽 ∂𝜇

= 𝜆𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−3
𝑥𝛽−1 [(1 − 𝑆(𝑥)) (𝑆(𝑥)(𝜆𝜇𝑥𝛽 − 1) + (1 − 𝜇𝑥𝛽))

+ log(𝑥) (𝛼𝜃𝑥𝜃 ((𝜇𝑥𝛽 − 1) + 𝑆(𝑥) (1+ 𝜆 + 𝜇𝑥𝛽(1 − 3𝜆)) + 𝑆2(𝑥)𝜆(𝜆𝜇𝑥𝛽 − 1))

+ 𝛽 (𝑆2(𝑥) (1 + 𝜆𝜇𝑥𝛽(𝜆𝜇𝑥𝛽 − 3)) + (1 + 𝑥𝛽𝜇(𝜇𝑥𝛽 − 3))

+ 𝑆(𝑥) (𝜇𝑥𝛽 (3(1 + 𝜆) + 𝜇𝑥𝛽(1 − 3𝜆)) − 2)))], 

and 

𝐼𝛽𝜆 =
∂2ℓ𝑛
∂𝛽 ∂𝜆

 

       =
∂2ℓ𝑛
∂𝜆 ∂𝛽

= 𝜇𝑆(𝑥)(1 − 𝑆(𝑥))
𝜆−2

𝑥𝛽−1 [1 − 𝑆(𝑥)(𝛽Log[𝑥] + 1)

+ log(𝑥) ((𝛽(1 − 𝜇𝑥𝛽) − 𝛼𝜃𝑥𝜃) + 2𝜆𝑆(𝑥)(𝛼𝜃𝑥𝜃 + 𝛽𝜇𝑥𝛽))

+ 𝜆 log(1 − 𝑆(𝑥)) (1 − 𝑆(𝑥)

+ log(𝑥) (𝛽 ((1 − 𝑥𝛽𝜇) + 𝑆(𝑥)(𝑥𝛽𝜆𝜇 − 1)) − 𝛼𝜃𝑥𝜃(1 − 𝜆𝑆(𝑥))))]. 


