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Abstract 

In this paper, the geometric process is introduced as a constant-stress accelerated model to analyze a series 

of life data that obtained from several increasing stress levels. The geometric process (GP) model is 

assumed when the lifetime of test units follows an extension of the exponential distribution. Based on 

progressive censoring, the maximum likelihood estimates (MLEs) and Bayes estimates (BEs) of the model 

parameters are obtained. Moreover, a real dataset is analyzed to illustrate the proposed procedures. In 

addition, the approximate, bootstrap and credible confidence intervals (CIs) of the estimators are 

constructed. Finally, simulation studies are carried out to investigate the precision of the MLEs and BEs for 

the parameters involved. 

Keywords: Geometric process; Accelerated life testing; Progressive censoring; Bayes 

estimation; Extension of the exponential distribution; Bootstrap confidence interval; 

Credible confidence interval; Simulation study. 

1.   Introduction 

The aim of traditional life testing and reliability experiments is to analyze data of failure 

time that obtained under normal operating conditions. However, such life data is so 

difficult to collect as a result of the limited testing time and the high reliability of the 

products such as electronics, power cables, insulating materials, laser, engines, etc. 

Therefore, accelerated life testing (ALT) is one of the most common approaches that used 

to obtain enough failure data in a short period of time. In such testing, products are tested 

at higher than usual levels of stress (e.g., temperature, voltage, humidity, vibration or 

pressure) to induce early failures. The life data collected from such accelerated tests is 

then analyzed and extrapolated to estimate the life characteristics under normal operating 



M. M. Mohie El-Din, S. E. Abu-Youssef, Nahed S. A. Ali, A. M. Abd El-Raheem 

Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp233-251 234 

conditions. The stress loading in ALT can be applied in different ways. Commonly used 

methods are constant-stress and step-stress. Nelson (1990) discussed the advantages and 

disadvantages of each of such methods. 

In constant-stress ALT, each unit is run at constant high stress either the failure occurs, or 

the test is terminated. Constant-stress models were studied by several authors; see Kim 

and Bai (2002), Watkins and John (2008) and Abdel-Hamid (2009). Jaheen et al. (2014) 

considered the constant partially ALT under progressive censoring for generalized 

exponential distribution. Guan et al. (2014) obtained the optimal constant-stress 

accelerated life tests under complete sampling for the generalized exponential 

distribution. Mohie El-Din et al. (2016a) considered the constant-stress ALT for the 

extension of the exponential distribution under progressive censoring. Mohie El-Din et al. 

(2017a) obtained the optimal constant-stress accelerated life tests under complete 

sampling for Lindley distribution. Mohie El-Din et al. (2017b) extended the results of 

Mohie El-Din et al. (2016a) to progressive-stress ALT. Abd El-Raheem (2019) discussed 

the problem of the optimal plan of constant stress ALT for the extension of the 

exponential distribution under complete sampling. Abd El-Raheem (2019b) expanded his 

results in Abd El-Raheem (2019a) to the censored case. 

 

In step-stress ALT, the stress on each unit is not constant but is increased step by step at 

prespecified times or upon the occurrence of a fixed number of failures. The step-stress 

models were studied extensively in the literature; see Miller and Nelson (1983), Bai et al. 

(1989) and Gouno et al. (2004). Balakrishnan et al. (2007) considered the simple step-

stress ALT under type-II censoring, assuming a cumulative exposure model for 

exponential distribution. Mohie El-Din et al. (2015a) applied the simple step-stress ALT 

under progressive first-failure censoring, considering a tampered random variable model 

for Weibull distribution. Mohie El-Din et al. (2015b) developed Bayes estimation for 

step-stress ALT to power generalized Weibull distribution under progressive censoring, 

using a tampered random variable model. Mohie El-Din et al. (2016b) considered the 

step-stress ALT for the extension of the exponential distribution under progressive 

censoring. 

 

The concept of the geometric process was introduced by Lam (1988), in repair 

replacement problems. Since it was introduced, many studies in system reliability have 

shown that the geometric process model is an efficient and simple model for data analysis 

with a single trend or multiple trends. For example, see Lam and Zhang (1996) and 

Zhang (2008). So far, few studies utilize the geometric process in the analysis of 

accelerated life testing. Huang (2011) considered the GP model in ALT with complete 

and censored exponential samples. Kamal et al. (2012) extended the GP model for 

complete Weibull failure data. Zhou et al. (2012) applied the GP in constant-stress ALT 

based on the progressive type-I hybrid censoring for Rayleigh failure data. 

 

In 2011, Nadarajah and Haghighi (2011) introduced an extension of the exponential 

distribution as an alternative to the gamma, Weibull and exponentiated exponential 

distributions. It provides great flexibility to analyze any real positive data. It has 
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increasing as well as decreasing failure rates depending on the values of the shape 

parameter. It has increasing (decreasing) failure rate function when 1)<(1>   

respectively. 

The extension of the exponential distribution EE ),(   is specified by the probability 

density function (pdf):  

( ) ( )  0,>0,>0,>,11exp1=)(
1




ttttf +−+
−

   (1.1) 

the corresponding cumulative distribution function (cdf) is given by  

( )  0,>0,>0,>,111=)( 


ttexptF +−−     (1.2) 

and the corresponding hazard rate function (hrf) is given by  

( ) .1=)(
1−

+


 tth  (1.3) 

 

For 1= , the pdf in (1.1) reduces to the pdf of the exponential distribution. 

 

The paper is drafted as follows: In Section 2 , a description of the acceleration model and 

test assumptions are presented. In Section 3 , the MLEs of the model parameters are 

derived. The BEs under square error loss function and LINEX loss function of model 

parameters are obtained in Section 4 . In Section 5 , a real dataset is analyzed to illustrate 

the proposed procedures in Sections 3  and 4 . In Section 6 , the asymptotic, bootstrap 

and credible confidence bounds for the model parameters are constructed. Section 7 , 

contains the simulation studies. The conclusion is made in Section 8 .  

2.   Model description 

In 1988, Lam (1988) defined geometric process as follows:  

 

Definition 2.1  A sequence of nonnegative random variables 1,2,...}=,{ nX n  is said to be 

a geometric process, if they are independent and the distribution function of nX  is given 

by )( 1xaF n−  for 1,2,...=n , where F  is the distribution function of 1X  and 0>a  is 

called the ratio of the GP.  

 

It is clear to see that a GP is stochastically increasing if 1<<0 a , and it is stochastically 

decreasing if 1>a . Therefore, the GP is a natural approach to analyze data from a series 

of events with trend. It can be shown that if 1,2,...}=,{ nX n  is a GP and the pdf of 1X  is 

f  with mean   and variance 
2 , then the pdf of nX  is given by )( 11 xafa nn −− , with 

1
=)(

−nn
a

XE


 and 
1)2(

2

=)(
−nn

a
XVar


, for more details see Lam (2007). 

 

In the following, we illustrate how stochastically decreasing geometric process can serve 

as accelerated model. For this purpose, we consider two groups of assumptions: group A 

for the constant-stress model and group B for the geometric process model and then we 

prove that two groups are equivalent. 
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Group A:   

1. Under constant-stress level k , sk 0,1,...,= , the failure time kT  follows EE

),( k distribution.  

2. The scale parameter   is a log-linear function of stress   that is  

 ,0,1,2,...,=,=log 10 skkk  +  

where 0  and 0>1  are unknown parameters depending on the nature of the 

product.  

3. The values of stress are equidistant that is ,= 0 dkk +  ,0,1,2,...,= sk  where d  

is the stress increment.  

Group B 

1. Assume }0,1,2,...,=,{ skTk  forms a geometric process, with ratio 1.>a   

2. The failure time 0T  follows EE ),( 0  distribution.  

 

Lemma 2.1  If the values of stress are equidistant that is, ,= 0 dkk +  ,0,1,2,...,= sk  

where d  is the stress increment, then the life characteristic }0,1,2,...,=,{ skk  forms a 

geometric sequence with the ratio 
d

ea 1=


.  

 

Proof. From the assumptions 2  and 3  in group A, we get  

,1,...,=,= 1

1

ske
d

k

k 





−

       (2.1) 

equation (2.1) shows that when the increased stress levels },...,,,{ 210 s  forms an 

arithmetic sequence with a constant difference d , the life characteristic 

}0,1,2,...,=,{ skk  forms a geometric sequence with the ratio 1>= 1
d

ea


.  

 

Theorem 2.1  If }0,1,2,...,=,{ skTk  forms a stochastically decreasing geometric process, 

then the life characteristic }0,1,2,...,=,{ skk  forms a geometric sequence.  

 

Proof. Since }0,1,2,...,=,{ skTk  is a geometric process, then  

1,>,0,1,...,=),(=)(
0

asktaFtF k

T
k

T  

from assumption 2 in group B, we get  

( ) ,111=)( 0
0


 texptFT +−−  

thus,  

( ) ,111=)( 0


 taexptF k

k
T +−−  

then kT , ,0,1,...,= sk  has EE distribution with scale parameter 0=  k

k a , then  
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1,>,1,...,=,=
1

aska
k

k

−


      (2.2) 

equation (2.2) shows that the life characteristic }0,1,2,...,=,{ skk  forms a geometric 

sequence with the ratio 1>a . 

 

It is evident from Lema 2.1 and Theorem 2.1 that the two groups of assumptions A and B 

are equivalent. Therefore, a stochastically decreasing geometric process can serve as 

accelerated model. 

 

Theorem 2.2 In constant-stress ALT, if the values of stress are equidistant, then the 

lifetimes under each stress level form a geometric process. That is, if ,= 0 dkk +  

,0,1,2,...,= sk  where d  is the stress increment, then }0,1,2,...,=,{ skTk  forms a 

geometric process.  

 

Proof. From the assumptions 2  and 3  in group A, we get  

,1,2,...,=,= 1

1

ske
d

k

k 





−

      (2.3) 

thus,  

,= 0 k

k a          (2.4) 

where 0  is the scale parameter of EE distribution under use-stress level 0 , and 

1>= 1
d

ea


 is the acceleration factor from 0  to 
1 . 

 

From the assumption 1 in group A and equation (2.4), then the pdf of the failure time of 

an item under the stress level ,k  ,0,1,2,...,= sk  is given by  

( ) ( ) 
,0,1,...,=),(=

11exp1=)(

0

0

1

00

sktafa

tataatf
k

T

k

kkk

k
T


 +−+

−

   (2.5) 

where )(
0

tfT  is the pdf at use-stress level 0 . 

 

From (2.5), then the cdf of the failure time of an item under the stress level ,k  

,0,1,2,...,= sk  is given by  

( ) 
,0,1,...,=),(=

,111=)(

0

0

sktaF

taexptF
k

T

k

k
T


+−−

    (2.6) 

where )(
0

tFT  is the cdf at use-stress level 0 . 

Then },...,,,{ 210 sTTTT  forms a geometric process with the ratio 1>= 1
d

ea


. 

 

According to constant ALT, suppose that there are s  increasing stress levels and under 

each level kn  items are inspected, where k  is the index of stress level, sk 1,2,...,= . 

Under each stress level, progressive type-II censoring is applied as follows: under the 
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stress level k , ,1,2,..,= sk  at the time of the first failure 1kt , ,1kR  items are randomly 

withdrawn from the remaining 1−kn  surviving items. At the time of the second failure 

2kt , ,2kR  items from the remaining ,12 kk Rn −−  items are randomly withdrawn. The test 

terminates at the time of km -th failure occurs 
k

kmt , at this time all remaining 

ik
k

m

ikk
k

mk RmnR ,

1

1=, = 
−

−−  items are withdrawn. It is clear that the complete samples and 

type-II censored samples are special cases of this scheme. For more details about 

progressive type-II censoring, see Balakrishnan and Aggarwala (2000), and Balakrishnan 

and Cramer (2014). With these notations the observed progressive censored data under 

the k -th stress level is .1,2,...,=,<...<< 21 skttt
k

kmkk  

3.   Maximum likelihood estimation 

Based on progressive type-II censored samples ,<...<< 21
k

kmkk TTT  with censoring 

schemes ),,...,,( ,,2,1
k

mkkk RRR  ,1,2,...,= sk  the MLEs of the model parameters are 

obtained. Let the observed data under the stress level k  is 

,1,2,...,=,<...<< 21 skttt
k

kmkk  then the likelihood function of  , 0  and a  is given by  

  ,)(1)(=),,( ,

1=1=

0












− ik
R

kiTkki
k

T

k
m

i

k

s

k

tFtfCaL      (3.1) 

where 

( )( ) ( ).1...21= ,

1

1=,2,1,1 ik
k

m

ikkkkkkkkk RmnRRnRnnC 
−

−+−−−−−−  

 

From (2.5) and (2.6) in (3.1), we get  

( )  ,))((11)(exp))((=),,( ,

1

0

1=1=

0












−+−


  kiikki

k
k

m

i

k

s

k

tRtaCaL  (3.2) 

),(1=)(where 0 ki

k

ki tat  + the log-likelihood function may then be written as  

( ) ( ) ,)(log1)())((11)(

))(log)(log()(loglog=),,(

,

1=1=

1=

0

1=1=

0

kikiik

k
m

i

s

k

k

s

k

k

s

k

k

s

k

ttR

mkmaCa





 −+−++

+++





  (3.3) 

the likelihood equations of  , 0  and a  are respectively  

( )( ) ,))((1)(1)(log= ,

1=1=

1= 


kiikki

k
m

i

s

k

k

s

k tRt

m

+−+








   (3.4) 

 ,)())(()(= 1

1=1=0

1=

0

kikiki

k
k

m

i

s

k

k

s

k ttta

m




 −+


 −



    (3.5) 
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 ,))(()()(= 1

0

1

1=1=

1= −− −+






 kikiki

k
k

m

i

s

k

k

s

k tttka
a

km

a


   (3.6) 

where ,
)(1

1)(
=)(

0 ki

k

ki
ki

ta

t
t






+

−
 and .1)(=)( , kiikki tRt +  

 

Now, we have a system of three nonlinear equations in three unknowns  , 0  and a . It 

is clear that a closed form solutions are very difficult to obtain. Therefore, an iterative 

procedure such as Newton Raphson can be used to find numerical solutions of the above 

nonlinear system.  

4.   Bayes estimation 

Square error (SE) loss function and linear exponential (LINEX) loss function are 

considered to obtain BEs of the model parameters ,  0  and a  under progressive type-

II censoring. Assume that the model parameters ,  0  and a  are independent with 

priors as follows: 

0,>,0,>,)( /1   −− e  

0,>0,>,)( 0

/
0

0 
−

 e  

1,>,
1

)( a
a

a   

then, the joint prior of the parameters ,  0  and a  is given by  

1.>0,>,,),,( 0

)0(1

01 ae
a

a 


 





 +−−

     (4.1) 

 

The joint posterior density function of the parameters ,  0  and a  can be written from 

(3.2) and (4.1) as follows:  

( ) .))((11)(exp))((

),,(),,(),,(

,

1

0

1=1=

)0(1

0100

*

1














kiikki

k
k

m

i

s

k

tRtae
a

aaLa

−+



−
+−−


 (4.2) 

 

Based on SE loss function and LINEX loss function, the Bayes estimator of the function 

of parameters ),,(=)( 0 aUU   is respectively  

)),((=)(
~

 UEU SE         (4.3) 

and  

)],([log
1

=)(
~ )(−− cU

LINEX eE
c

U       (4.4) 

where (.)E  is the expected value and 0c  is the shape parameter of LINEX loss 

function. 
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Unfortunately, we cannot compute these expectations explicitly. Therefore, Markov chain 

Monte Carlo (MCMC) method is used to approximate these expectations.  

4.1  Bayesian estimation using MCMC method 

In this subsection, MCMC method is applied to generate samples from the posterior 

distribution and then compute the BEs of 0,  and a . 

 

From the joint posterior density function in (4.2), the conditional posterior distributions 

of 0,  and a  are given respectively by  

( ) ,))((11)(exp))((),|( ,

1=1=

/1

0

*

1

  kiikki

k
m

i

s

k

tRtea −+ 
−−

 (4.5) 

( ) ,))((11)(exp))((),|( ,

1

1=1=

/
01=

00

*

1


 kiikki

k
m

i

s

k

k
m

s

k tRtea −+ −−




 (4.6) 

( ) .))((11)(exp))((),|( ,

1

1=1=

1

1=
0

*

1

  kiikki

k
m

i

s

k

k
km

s

k tRtaa −+ −

−




 (4.7) 

 

The conditional posterior distributions of  , 0  and a  in (4.5), (4.6) and (4.7) cannot be 

reduced analytically to well known distributions. Therefore, the Metropolis method with 

normal proposal distribution is used to generate random samples from these distributions, 

see Metropolis et al. (1953). 

 

The following algorithm is proposed to generate  , 0  and a  from the conditional 

posterior distributions and then obtain the BEs. 

Algorithm (1) 

1.  Start with ,ˆ=(0)

MLE  ,ˆ= 0

(0)

0 MLE  .ˆ=(0)

MLEaa   

2.  Set 1.=i   

3.  Generate *  from proposal distribution )).(,( 1)(1)( −− ii varN    

4.  Calculate the acceptance probability  

.
),|(

),|(
1,min=)|(

1)(1)(

0
1)(*

1

1)(1)(

0
**

1*1)(













−−−

−−

−

iii

ii

i

a

a
r




  

5.  Generate (0,1).from U   U   

6.  If ),|( *1)(  − irU  accept the proposal distribution and set .= *)(  i  Otherwise, 

reject the proposal distribution and set .= 1)()( −ii    

7.  To generate 
*

0 , do the steps ((2)-(6)) for 0 .  
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8.  To generate *a , do the steps ((2)-(6)) for a .  

9.  Set 1.= +ii   

10.  Repeat steps ((3)-(9)), N  times.  

11.  Obtain the BEs of  , 0  and a  using MCMC under SE loss function as  

  .or,iswhere,
1

=
~

0

)(

1=

a
MN

i
N

Mi

SE  
+−

 

12.  Obtain the BEs of  , 0  and a  using MCMC under LINEX loss function as  

.or,iswhere,
1

log
1

=
~

0

)(

1=

ae
MNc

i
c

N

Mi

LINEX  










−
− −

+

  

5.   Application 

In this section, a real dataset is used to illustrate the proposed procedure in Sections 3 and 

4. The censored data in Table 5.1 from Nelson (1990) (page 158) represents the failure 

time in hours of 30  motors with class-B insulation run at 
150 C, 

170 C and 
190 C. For 

each level of temperature, ten motors were periodically examined for insulation failure, 

and the given failure time is the midway between the inspection time when the failure 

was found and the time of the previous inspection. The test purpose was to estimate the 

median life of such insulation at its design temperature of 
130 C. The + in Table 5.1 

indicates a running motor at that number of hours.  

Table 5.1:   The failure times in hours of 30  motors  

150 


C  170 


C  190 


C 

9429+ 1764 408 

9429+ 2772 408 

9429+ 3444 1344 

9429+ 3542 1344 

9429+ 3780 1440 

9429+ 4860 1920 

9429+ 5196 2256 

9429+ 6206 2352 

9429+ 6792+ 2596 

9429+ 6792+ 3120+ 

 

Based on engineering experience, the Arrhenius relationship is expected to be adequate to 

describe the accelerated temperature. Thus, the acceleration model can be represented as  

0,1,2,3.=0,>,=)(ln 1
1

0 k
k

k 





−
+  

In this example, 
130=0 C, 150=1 C, 170=2 C and 

190=3 C. 

The data in Table 5.1 is progressively censored, so the progressive censoring schemes 

ikR , , 2,3,=k  kmi 1,...,=  of each stress level are as follows:   
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• Under C170=2 : 10=2n , 8=2m  and 0,=2,iR  1,...,7=i , 2=2,8R .  

• Under C190=3 : 10=3n , 9=3m  and 0=3,iR , 1,...,8=i , 1=3,9R .  

 

To check the validity of EE distribution with the data in Table 5.1 for each constant-stress 

1,2,3=, kk . We use modified Kolmogorov-Smirnov (K-S) goodness of fit test for 

progressive type-II censored data. The modified K-S statistic for progressive type-II 

censored data was suggested by Pakyari and Balakrishnan (2012). The values of the 

modified K-S statistic and the corresponding P-values under each stress level are 

presented in Table 5.2. It is clear that the estimated EE distributions provide good fit to 

the given data due to all P-values are greater than 0.05 .  

Table 5.2:  Test statistic and the corresponding P-values of each stress level for EE 

distribution  

 Stress (temperature)              170  C      190  C 

Statistic          0.14637     0.2596 

P-value          0.98     0.092 

 

The MLEs and BEs under SE loss function (BSEL) and LINEX loss function (BLL) of 

the parameters  , 0  and a  under progressive censoring schemes ikR ,  are introduced in 

Table 5.3. Furthermore, the mean time to failure (MTTF) at different levels of 

temperature are computed by using MLEs of the parameters and introduced in Table 5.4, 

where MTTF under normal operating conditions is given by  

,1),
ˆ

1
(

ˆˆ
=

0

1




e
MTTF  

where ,.)(.  is the incomplete gamma function.  

Table 5.3: MLEs and BEs of  , 0  and a  for the real dataset  

 ̂   MLEs   BSEL   BLL 

2= −c  .001=c  2=c  

̂  0.42420 1.4062 2.2059 1.4061 1.0979 

0̂  0.00025 0.000014 0.000016 0.000014 0.000011 

â  1.9273 7.4753 30.899 7.4664 2.9139 

Table 5.4:   Mean time to failure at different levels of temperature   

 temperature        130

C      170


C       190


C  

MTTF        25085.8     3945.5     1563.11 

6.   Interval estimation 

In this section, the approximate, bootstrap and credible CIs of the parameters  , 0  and 

a  are derived. 
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6.1. Approximate confidence intervals 

In this subsection, the approximate CIs of the parameters are derived based on the 

asymptotic distribution of the MLEs of the elements of the vector of unknown parameters 

),,(= 0 a . It is known that the asymptotic distribution of the MLEs of   is given by 

Miller (1981).  

( ) ( ),0,)ˆ(),ˆ(),ˆ( 00 ijNaa  →−−−  

where 1,2,3=,, jiij  is the variance-covariance matrix of the unknown parameters 0,  

and a . 

 

The approximate )%(1100 −  two sided CI of   is given by  

( ) 3,1,2=,ˆ=ˆ,ˆ /21 oriZ iiul  −      (6.1) 

where   is  , 0  or a , and qZ  is the thq−100  percentile of a standard normal 

distribution. 

6.2  Bootstrap confidence intervals 

CIs based on the parametric bootstrap method for the unknown parameters  , 0  and a  

using percentile interval are constructed, for more details see Efron and Tibshirani 

(1993). 

 

The following algorithm is implemented to obtain a bootstrap samples. 

Algorithm (2)   

1. From an original data, ( )
k

kmkkk tttt ,...,, 21 , ,1,2,...,= sk  compute the MLEs of the 

parameters  ,  and a .  

2. Use ,ˆ
MLE  0

ˆ
MLE  and 

MLEâ  to generate a bootstrap sample 
*

kt  with same ikR , , 

.1,2,...,=,1,2,...,= skmi k   
3. As in step (1) based on 

*

kt  compute the bootstrap samples estimates ,ˆ*  
*

0̂  and 

*â  of ,ˆ
MLE  

MLE0̂  and MLEâ  respectively.  

4. Repeat steps ((1)-(3)), B  times and arrange each estimation in ascending order to 

obtain the bootstrap samples }ˆ,...,ˆ,ˆ{ ]*[*[2]*[1] B , }ˆ,...,ˆ,ˆ{
]*[

0

*[2]

0

*[1]

0

B
  and 

}ˆ,...,ˆ,ˆ{ ]*[*[2]*[1] Baaa . Then, the )%(1100 −  percentile bootstrap CI of   is given 

by 

  ( ) ( ) .or,iswhere,ˆ,ˆ=ˆ,ˆ 0

]/2)*[(1/2]*[** aBB

ul   −

  
 (6.2) 

6.3   Credible confidence intervals 

A )%100(1 −  Bayesian credible or posterior interval of a random quantity   is the 

interval that has posterior probability )(1 − , that is  

.1=)|(=)( *

1  −  dtulp
u

l
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There are different types of credible intervals, including a central interval of posterior 

probability which is the range of values between the /2  and )/2(1 −  percentiles. 

The following algorithm is performed to obtain credible CIs of  , 0  and a . 

Algorithm (3)   

1. Do steps ((1) (11))−  in algorithm (1) .  

2. Repeat step (1) , K  times and arrange each estimation in ascending order as 

}~,...,~,~{ ][[2][1] K , }~,...,~,~{
][

0

[2]

0

[1]

0

K
  and }~,...,~,~{ ][[2][1] Kaaa .  

Then, the )%(1100 −  credible CI of   is given by  

( ) ( ) .or,iswhere,
~

,
~

=
~

,
~

0

]/2)[(1/2][ aKK

ul   −    (6.3) 

7.   Simulation studies 

In this section, simulation studies are conducted to investigate the performances of the 

MLEs and BEs under SE loss function (BSEL) and LINEX loss function (BLL) 

regarding their mean square errors (MSEs) and relative absolute biases (RABs) for 

different choices of kn , km  and ikR , , kmi 1,2,...,= , 1,2,...,4.=k  Furthermore, the 95%  

approximate, credible and percentile bootstrap CIs are computed. The progressive 

censoring schemes used in the simulation studies are shown in Table 7.1. Moreover, 

Tables 7.2 and 7.3 introduce MSEs and RABs of the MLEs and BEs of the model 

parameters. Finally, Tables 7.4 and 7.5 include the lengths and the coverage probabilities 

of the 95%  approximate, credible and percentile bootstrap CIs of the model parameters.  

Table 7.1: The progressive censoring schemes ikR , , kmi 1,2,...,= , 1,2,...,4,=k  used 

in the simulation studies.  

 kn    km   SC.    ),...,( ,,1
k

mkk RR    SC.   ),...,( ,,1
k

mkk RR    SC.    ),...,( ,,1
k

mkk RR  













4=5

3=10

2=15

1=25

=

k

k

k

k

nk

 













4=4

3=8

2=12

1=20

=

k

k

k

k

mk

 

[1]  














wiseother

ik

ik

ik

ik

R ik

0

1=4,=1

1=3,=2

1=2,=3

1=1,=5

=,

 

[2]  














wiseother

mik

mik

mik

mik

R ik

0

=4,=1

=3,=2

=2,=3

=1,=5

=

4

3

2

1

,

 

[3]  














wiseother

ik

ik

ik

ik

R ik

0

3=4,=1

5,6=3,=1

7,8,9=2,=1

12,...,16=1,=1

=,

 













4=10

3=20

2=25

1=35

=

k

k

k

k

nk

 













4=8

3=16

2=20

1=27

=

k

k

k

k

mk

 

[4]  














wiseother

ik

ik

ik

ik

R ik

0

1=4,=2

1=3,=4

1=2,=5

1=1,=8

=,

 

[5]  














wiseother

mik

mik

mik

mik

R ik

0

=4,=2

=3,=4

=2,=5

=1,=8

=

4

3

2

1

,

 

[6]  














wiseother

ik

ik

ik

ik

R ik

0

5,6=4,=1

9,...,12=3,=1

11,...,15=2,=1

13,...,20=1,=1

=,

 













4=20

3=25

2=35

1=50

=

k

k

k

k

nk

 













4=16

3=20

2=27

1=38

=

k

k

k

k

mk

 

[7]  














wiseother

ik

ik

ik

ik

R ik

0

1=4,=4

1=3,=5

1=2,=8

1=1,=12

=,

 

[8]  














wiseother

mik

mik

mik

mik

R ik

0

=4,=4

=3,=5

=2,=8

=1,=12

=

4

3

2

1

,

 

[9]  














wiseother

ik

ik

ik

ik

R ik

0

9,...,12=4,=1

10,...,14=3,=1

12,...,19=2,=1

18,...,29=1,=1

=,
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











4=30

3=35

2=50

1=70

=

k

k

k

k

nk

 













4=24

3=27

2=40

1=55

=

k

k

k

k

mk

 

[10]  














wiseother

ik

ik

ik

ik

R ik

0

1=4,=6

1=3,=8

1=2,=10

1=1,=15

=,

 

[11]  














wiseother

mik

mik

mik

mik

R ik

0

=4,=6

=3,=8

=2,=10

=1,=15

=

4

3

2

1

,

 

[12]  














wiseother

ik

ik

ik

ik

R ik

0

14,...,19=4,=1

15,...,22=3,=1

26,...,35=2,=1

34,...,48=1,=1

=,

 

The estimation procedure is performed according to the following algorithm. 

Algorithm (4)   

1. Specify the values of s , kn , km , 0 , 
1 ,..., s  and c .  

2. For given values of the prior parameters  ,   and   generate   from 

( , )Gamma    and 0  from ( )Exponential  .  

3. Generate s  simple random samples of size km  from Uniform (0,1)  distribution, 

),...,,( 21
k

kmkk UUU , sk 1,2,...,= .  

4. Determine the values of the censored schemes, ikR , , ,1,2,...,= kmi  and 

sk 1,2,...,=  such that kkik
k

m

i
mnR − =,1=

.  

5. Set 

1/( )
,

= 1
= ,

m
k

i R
k d

d m i
k

ki kiE U

+
− +

 =1,2,..., ,ki m  and sk 1,2,...,= .  

6. Obtain the progressive type-II censored samples ),...,,( **

2

*

1
k

kmkk UUU , where 

kd
k

m

i
k

mdki EU  +−
−

1=

* 1= , ,1,2,...,= kmi  sk 1,2,...,= .  

7. Use step 6, to generate random samples ),...,( 1
k

kmk tt , ,1,2,...,= sk  from (2.6), as 

follows:  

  ( ) .1,2,...,=,1,2,...,=,1)(1log1
1

=
1

*

0

skmiU
a

t kkikki 







−−− 


 

8. Use the progressive censored data to compute the MLEs of the model parameters 

by solving the nonlinear system ((3.4)-(3.6)).  

9. Compute the BEs of the model parameters relative to SE and LINEX loss 

functions using the algorithm (1), with 11000=N , 1000=M .  

10. Compute the approximate CIs with confidence level 95%  for the three 

parameters  , 0  and a .  

11. Compute 95%  bootstrap and credible CIs using the algorithm (2)  and algorithm 

(3)  respectively of the parameters  , 0  and a .  

12. Replicate the steps (11)),((3)−  1000  times.  

13. Compute the average values of the MSEs and RABs associated with the MLEs 

and BEs of the parameters  , 0  and a . 
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14. Do steps ((1)-(13)) with different values of ,kn  
km  and ikR , , =1,2,..., ki m , 

sk 1,2,...,= .  

Table 7.2: MSEs and RABs inside the parentheses for MLEs and BEs under SE 

loss function (BSEL) and LINEX loss function (BLL) of  , 0  and a  

with true values ( 1.0108=0.9181,= 0 , 3.2102=a , 8.429= , 

0.1089=  and 1.0108= ), the number of stress levels 4)=(s , and 

50=0 , 80=1 , 110=2 , 140=3  and 170.=4   

k

s

k
n 1=

 k

s

k
m 1=

  SC.       ML   BSEL   BLL 

2= −c  .001=c  2=c  

 44 [1]   1.1437(0.6857) 0.1077(0.2638) 0.3435(0.4711) 0.1077(0.2638) 0.0495(0.1815) 

   
0  0.6099(0.5681) 0.2510(0.3626) 1.9585(1.1007) 0.2510(0.3625) 0.1717(0.2617) 

   a  0.2364(0.1204) 0.1311(0.0933) 0.23781(0.1166) 0.1311(0.0933) 0.1462(0.0994) 

  [2]   1.7308(0.8929) 0.1008(0.2635) 0.5873(0.6304) 0.1007(0.2634) 0.0386(0.1691) 

   
0  0.4385(0.5380) 0.2466(0.3831) 1.9363(1.0805) 0.2465(0.3830) 0.1619(0.2680) 

   a  0.2065(0.1166) 0.1408(0.1002) 0.2532(0.1216) 0.1408(0.10029) 0.1747(0.1101) 

  [3]   0.6778(0.4794) 0.0625(0.1962) 0.2134(0.3555) 0.0624(0.1962) 0.0398(0.1626) 

   
0  0.4648(0.5453) 0.2270(0.3768) 2.8348(1.3936) 0.2268(0.3767) 0.1925(0.2686) 

   a  0.2674(0.1284) 0.1647(0.1045) 0.2402(0.1919) 0.1648(0.1045) 0.2338(0.1300) 

 55    0.3463(0.3340) 0.0607(0.1877) 0.1723(0.3039) 0.0607(0.1877) 0.0331(0.1462) 

   
0  0.4195(0.5019) 0.2260(0.3516) 1.8804(1.0476) 0.2258(0.3515) 0.1253(0.2451) 

   a  0.2028(0.1112) 0.1219(0.0962) 0.1859(0.1069) 0.1219(0.0962) 0.1970(0.1131) 

 71 [4]   0.1508(0.2565) 0.0508(0.1801) 0.0775(0.2116) 0.0508(0.1801) 0.0375(0.1485) 

   
0  0.5112(0.4936) 0.2403(0.3585) 1.8242(0.9467) 0.2401(0.3584) 0.1018(0.2814) 

   a  0.1635(0.0963) 0.1172(0.0809) 0.1816(0.1022) 0.1172(0.0808) 0.1096(0.0845) 

  [5]   0.6015(0.4754) 0.1164(0.2663) 0.2902(0.4831) 0.1164(0.2663) 0.0382(0.1685) 

   
0  0.4379(0.5364) 0.2133(0.3777) 1.9351(1.0312) 0.2132(0.3776) 0.0790(0.2723) 

   a  0.1574(0.10813) 0.1089(0.0856) 0.1643(0.1618) 0.1089(0.0856) 0.17389(0.0927) 

  [6] 
 

0.7201(0.4288) 0.0734(0.2099) 0.1730(0.3271) 0.0734(0.2098) 0.0392(0.1548) 

   
0

 
0.3860(0.4687) 0.0912(0.2441) 0.5477(0.5337) 0.0911(0.2441) 0.0726(0.2595) 

   a  0.2236(0.1116) 0.1523(0.0926) 0.2217(0.1128) 0.1522(0.0926) 0.1327(0.0892) 

 90  
 

0.1050(0.2415) 0.0464(0.1705) 0.0917(0.2309) 0.0464(0.1705) 0.0317(0.1448) 

   
0

 
0.3850(0.4131) 0.2166(0.3367) 1.2895(0.8471) 0.2165(0.3366) 0.0823(0.2445) 

   a  0.1195(0.0881) 0.0976(0.0801) 0.1101(0.0787) 0.0976(0.0801) 0.1101(0.0882) 

 101 [7] 
 

0.1016(0.2529) 0.3908(0.1769) 0.0964(0.2604) 0.0398(0.1769) 0.0303(0.1464) 

   
0

 
0.1877(0.3517) 0.1228(0.2757) 0.5116(0.4854) 0.1228(0.2757) 0.0878(0.2437) 

   a  0.0384(0.0475) 0.0359(0.0466) 0.0325(0.0443) 0.0359(0.0466) 0.0516(0.0588) 

  [8] 
 

0.8670(0.5685) 0.0750(0.2189) 0.2883(0.4263) 0.0749(0.2189) 0.0598(0.1992) 

   
0

 
0.2625(0.4164) 0.1060(0.2458) 0.7101(0.5208) 0.1059(0.2458) 0.0765(0.2275) 

   a  0.1215(0.0832) 0.0422(0.0506) 0.1230(0.0818) 0.0422(0.0506) 0.1009(0.0836) 

  [9] 
 

0.1318(0.2679) 0.0601(0.194) 0.1137(0.2621) 0.0600(0.1942) 0.0385(0.1616) 

   
0

 
0.1374(0.3092) 0.0946(0.2394) 0.2733(0.3743) 0.0946(0.2394) 0.0669(0.2213) 
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   a  0.0666(0.0668) 0.0521(0.0589) 0.0791(0.0738) 0.0521(0.0589) 0.0457(0.0520) 

Table 7.3  (Continued)  

k

s

k
n 1=  

k

s

k
m 1=   

SC.       ML   BSEL   BLL 

2= −c  .001=c  2=c  
 130  

 0.0645(0.2101) 0.0391(0.1690) 0.0677(0.2167) 0.0391(0.1690) 0.0253(0.1398) 

   
0

 
0.1490(0.3098) 0.0921(0.2224) 0.2051(0.2945) 0.0921(0.2224) 0.0774(0.2289) 

   a  0.0798(0.0611) 0.0675(0.0567) 0.0812(0.0626) 0.0675(0.0567) 0.0648(0.0595) 

 146 [10]   0.0528(0.1802) 0.0407(0.1603) 0.0619(0.1871) 0.0407(0.1603) 0.0296(0.1455) 

   
0

 
0.1122(0.2734) 0.0968(0.2587) 0.2520(0.3883) 0.0968(0.2587) 0.0641(0.2087) 

   a  0.0470(0.0566) 0.0332(0.0446) 0.0478(0.0562) 0.0332(0.0446) 0.0465(0.0561) 

  [11]   0.7572(0.4231) 0.0728(0.2114) 0.2954(0.3779) 0.0727(0.2113) 0.0358(0.1498) 

   
0

 
0.1692(0.3334) 0.0930(0.2537) 0.3688(0.4301) 0.0930(0.2537) 0.0738(0.2271) 

   a  0.0704(0.0706) 0.0609(0.0656) 0.0710(0.0701) 0.0609(0.0655) 0.0588(0.063) 

  [12]   0.0601(0.1772) 0.0340(0.1459) 0.0547(0.1887) 0.0340(0.1459) 0.0231(0.1193) 

   
0

 
0.1376(0.2713) 0.0957(0.2203) 0.2479(0.3555) 0.0956(0.2203) 0.0663(0.1954) 

   a  0.0605(0.0592) 0.0513(0.0538) 0.0573(0.0588) 0.0513(0.0538) 0.0531(0.0541) 

 185  
 0.0294(0.1422) 0.0238(0.1330) 0.0345(0.1561) 0.0238(0.1330) 0.0177(0.1155) 

   
0

 
0.1031(0.2565) 0.0880(0.2304) 0.1880(0.3054) 0.0880(0.2304) 0.0649(0.2086) 

   a  0.0597(0.0647) 0.0550(0.0516) 0.0594(0.0605) 0.0555(0.0516) 0.0565(0.0582) 

Table 7.4   Lengths and coverage probabilities of the 95%  approximate, credible 

and bootstrap CIs for  , 0  and a  with true values (

1.0108=0.9181,= 0 , 3.2102=a , 8.429= , 0.1089=  and 

 1.0108= ), the number of stress levels 4)=(s , and 50=0 , 80=1 , 

110=2 , 140=3  and 170.=4   

k

s

k
n 1=

 

  

k

s

k
m 1=

  SC.     

  

 Length  Coverage probability 

Approximate 

CI  

Credible 

CI 

 Bootstrap 

CI 

Approximate 

CI  

 Credible 

CI 

Bootstrap 

CI 

 44 [1]   3.609 1.353 4.037 1 1 0.75 

   
0  2.949 2.017 4.734 0.725 0.95 0.725 

   a  1.944 1.819 2.708 0.95 1 0.975 

  [2]   5.399 1.615 5.146 1 1 0.85 

   
0  3.000 2.357 3.735 0.8 1 0.825 

   a  1.896 1.807 2.575 0.975 0.975 0.95 

  [3]   3.162 1.233 4.262 0.975 1 0.85 

   
0  3.238 2.482 6.864 0.925 1 0.85 

   a  1.851 1.718 2.612 0.975 1 0.95 

 55    1.922 1.088 3.033 0.975 1 0.95 

   
0

 
2.678 2.242 3.423 0.95 0.975 0.875 

   a  1.757 1.625 2.374 0.925 0.975 0.925 

 71 [4]   1.262 0.921 1.891 0.9 1 0.85 
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0  2.481 2.085 4.242 0.9 0.975 0.825 

   a  1.582 1.482 2.418 0.9 0.975 0.925 

Table 7.3  (Continued)  

k

s

k
n 1=

 k

s

k
m 1=

  SC.     Length  Coverage probability 

      Approximate 

CI  

Credible 

CI 

Bootstrap 

CI 

Approximate 

CI  

Credible 

CI 

Bootstrap 

CI 

  [5]   2.869 1.312 3.488 0.975 0.975 0.925 

   
0  2.990 2.227 3.316 0.925 1 0.875 

   a  1.501 1.4369 1.544 1 1 1 

  [6]   2.291 1.117 3.126 1 0.975 0.9 

   
0  2.542 1.754 2.950 0.95 1 0.9 

   a  1.511 1.4401 1.700 0.9 0.95 0.925 

 90    1.067 0.875 1.683 0.95 0.95 0.9 

   
0  2.231 1.918 3.281 0.9 0.975 0.875 

   a  1.347 1.281 1.450 0.95 0.95 0.9 

 101 [7]   1.1967 0.935 1.831 0.975 1 0.925 

   
0  1.639 1.572 2.279 0.875 0.975 0.875 

   a  1.132 1.106 1.255 1 1 0.975 

  [8]   3.235 1.292 3.484 0.95 0.975 0.825 

   
0  2.009 1.702 2.166 0.875 0.975 0.85 

   a  1.155 1.128 1.210 0.975 0.95 0.95 

  [9]   1.235 0.940 2.016 0.975 0.95 0.85 

   
0  1.565 1.490 2.237 0.875 1 0.825 

   a  1.207 1.171 1.348 1 0.975 0.975 

 130    0.962 0.805 1.419 1 0.975 0.875 

   
0  1.385 1.347 1.862 0.975 0.95 0.9 

   a  1.034 1.018 1.144 0.95 0.95 0.95 

 146 [10]   0.798 0.707 1.123 0.975 0.925 0.875 

   
0  1.509 1.402 1.658 0.95 1 0.925 

   a  0.983 0.955 1.108 0.975 0.975 0.925 

  [11]   2.186 1.177 2.601 0.975 0.975 0.875 

   
0  1.716 1.537 1.782 0.875 0.975 0.85 

   a  0.955 0.946 0.949 0.95 0.95 250.875 

  [12]   0.951 0.808 1.295 0.975 0.95 0.95 

   
0  1.481 1.415 1.889 0.9 0.9 0.9 

   a  0.982 0.963 1.021 0.95 0.95 0.9 

 185    0.679 0.633 0.880 0.925 0.95 0.95 

   
0  1.255 1.227 1.506 0.95 0.975 0.9 

   a  0.870 0.854 0.945 0.95 0.925 0.925 
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8.   Conclusions 

In this paper, we have considered the GP as a constant-stress ALT model for the EE 

distribution under progressive type-II censored data. Based on simulation studies, point 

estimation of the model parameters ,  0  and a  has been investigated through 

maximum likelihood and Bayes methods. Moreover, approximate, credible and bootstrap 

CIs have been established for the model parameters ,  0  and a . The calculations have 

been worked out based on different sample sizes and three different progressive 

censoring schemes, one of them represents the traditional type-II censoring. 

 

From the results in Tables 7.2, 7.3, 7.4 and 7.5, we observed the following:   

1. The MSEs and RABs of MLEs and BEs of the considered parameters decrease as 

the sample size increases, except for few cases. This exception may be due to 

fluctuation in data.  

2. The BEs of  , 0  and a  under SE loss function and LINEX loss function 

2)=0.01,=( cc  give more accurate results through the MSEs and RABs than 

MLEs.  

3. The BEs of   and 0  under LINEX loss function 2)=(c  have the smallest 

MSEs and RABs as compared with BEs under SE loss function and MLEs, except 

for few cases.  

4. The BEs of the parameter a  under SE loss function have the smallest MSEs and 

RABs as compared with BEs under LINEX loss function and MLEs, except for 

few cases.  

5. The length of the approximate, bootstrap and credible CIs decreases as the sample 

size increases.  

6. The credible CIs of  , 0  and a  give more accurate results than approximate 

and bootstrap CIs through the length and the coverage probability of CIs.  
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