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Abstract 

In this paper, a method for generating a new family of univariate continuous distributions using the tangent 

function is proposed. Some general properties of this new family are discussed: hazard function, quantile 

function, Rényi and Shannon entropies, symmetry, and existence of the non-central 𝑛𝑡ℎ moment. Some new 

members as sub-families in the 𝑇 − 𝑋 family of distributions are provided. Three members of the new sub-

families are defined and discussed: the four-parameter Normal-Generalized hyperbolic secant distribution 

(𝑁𝐺𝐻𝑆), the four-parameter Gumbel-Generalized hyperbolic secant distribution (𝐺𝐺𝐻𝑆), and the five-

parameter Generalized Error-Generalized hyperbolic secant distribution (𝐺𝐸𝐻𝑆), the shapes of these 

distributions were found: skewed right, skewed left, or symmetric, and unimodal, bimodal, or trimodal. 

Finally, to demonstrate the usefulness and the capability of the distributions, two real data sets are used and 

the results are compared with other known distributions. 
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1. Introduction 

Statistical distribution is a mathematical description of a random phenomenon in terms of 

the probabilities of events. Many methods were recently proposed and developed to 

generate new statistical distributions. 

 

A class of beta-generated distributions were proposed and studied by Eugene, Lee and 

Famoye (Eugene et al., 2002). Their idea has been build depending on the property of the 

beta random variable lies in the interval (0,1), and they have defined the cumulative 

distribution function (CDF) of the beta-generated class by 

 𝐺(𝑥) = ∫ 𝑏(𝑡)𝑑𝑡
𝐹(𝑥)

0

, 𝛼, 𝛽 > 0 (1.1) 

 

where 𝑏(𝑡) = (𝐵(𝛼, 𝛽))
−1
𝑡𝛼−1(1 − 𝑡)𝛽−1 is the beta distribution and 𝐹(𝑥) is the CDF of 

any continuous random variable 𝑋. The probability density function (PDF) corresponding 

to this class in (1.1) is given by 

 𝑔(𝑥) =
1

𝐵(𝛼, 𝛽)
𝑓(𝑥)(𝐹(𝑥))

𝛼−1
(1 − 𝐹(𝑥))

𝛽−1
 (1.2) 

 

Many studies about the beta-generated class have been published by applying different 𝐹 

in (1.2). Examples include: Beta-Gumbel distribution by Nadarajah and Kotz (2004), 

beta-exponential distribution by Nadarajah and Kotz (2006), Beta-Weibull distribution by 

Famoye et al. (2004), beta-gamma distribution by Kong et al. (2007), Beta-Pareto 

distribution by Akinsete et al. (2008), beta-modified Weibull distribution by Silva et al. 
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(2010), Beta-Birnbaum-Saunders distribution by Cordeiro and Lemonte (2011), and 

Beta-Cauchy distribution by Alshawarbeh et al. (2012). 

 

The beta-generated class was extended by Jones (2009) and Cordeiro and de Castro 

(2011), that was by replacing the beta distribution 𝑏(𝑡) in (1.1) by the Kumaraswamy 

distribution 𝑏(𝑡) = 𝛼𝛽𝑡𝛼−1(1 − 𝑡𝛼)𝛽−1, 𝑡 ∈ (0,1) (Kumaraswamy, 1980). The new 

Kumaraswamy-generated (Kw-G) class is given by 

 𝑔(𝑥) = 𝛼𝛽𝑓(𝑥)(𝐹(𝑥))
𝛼−1

(1 − (𝐹(𝑥))
𝛼
)
𝛽−1

 (1.3) 

 

As is the beta-generated class, several distributions and generalized distributions from 

(1.3) have been studied: Kw-Weibull distribution by Cordeiro et al. (2010), Kw-Gumbel 

distribution by Cordeiro et al. (2011), Kw-generalized gamma distribution by de Castro et 

al. (2011), and the Kw-generalized half-normal distribution by Cordeiro et al. (2012). 

 

By replacing the beta distribution 𝑏(𝑡) in (1.1) by the generalized beta distribution of the 

first kind 𝑏(𝑡) = 𝑐(𝐵(𝛼, 𝛽))
−1
𝑡𝛼𝑐−1(1 − 𝑡𝑐)𝛽−1, 𝑡 ∈ (0,1) (McDonald, 1984) we get the 

generalized beta-generated (GB-G) class, this family of distributions were proposed by 

Alexander et al. (2012), and it is given by 

 𝑔(𝑥) =
1

𝐵(𝛼, 𝛽)
𝑐𝑓(𝑥)(𝐹(𝑥))

𝛼𝑐−1
(1 − (𝐹(𝑥))

𝑐
)
𝛽−1

 (1.4) 

 

A more general class from classes in (1.2), (1.3) and (1.4) has been introduced by 

Alzaatreh et al. (2013a). This new class is depending on replacing the beta PDF 𝑏(𝑡) with 

a PDF 𝑟(𝑡) of a continuous random variable 𝑇 ∈ [𝑎, 𝑏], −∞ ≤ 𝑎 < 𝑏 ≤ ∞, and the CDF 

𝐹(𝑥) with a function 𝑊(𝐹(𝑥)), where 𝑊(∙) satisfies the following conditions: 

 

i. 𝑊(𝐹(𝑥)) ∈ [𝑎, 𝑏]. 
ii. 𝑊is differentiable and monotonically non-decreasing. 

iii. 𝑊(𝐹(𝑥)) ⟶ 𝑎 as 𝑥 ⟶ −∞, and 𝑊(𝐹(𝑥)) ⟶ 𝑏 as 𝑥 ⟶ +∞. 
(1.5) 

 

The CDF of this family of distributions is called 𝑇 − 𝑋(𝑊) family and is defined as 

 𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
𝑊(𝐹(𝑥))

𝑎

= 𝑅{𝑊(𝐹(𝑥))} (1.6) 

 

The corresponding PDF (if it exists) of this class is given by 

 𝑔(𝑥) =
𝑑

𝑑𝑥
𝐺(𝑥) = {

𝑑

𝑑𝑥
 𝑊(𝐹(𝑥))}  𝑟{𝑊(𝐹(𝑥))} (1.7) 

 

where 𝑅(∙) is the CDF of a continuous random variable 𝑇. Alzaatreh et al. (2013a) have 

suggested some 𝑊(∙) functions. As a special case of 𝑇 − 𝑋(𝑊) family defined in (1.6), 

Alzaatreh et al. (2013a) considered the function 𝑊(𝐹(𝑥)) = − log{1 − 𝐹(𝑥)} with 
(0,∞) as the support of the random variable 𝑇. Whereas Al-Aqtash et al. (2015) used the 

𝑊(∙) as a logit function of the CDF 𝐹(𝑥), 𝑊(𝐹(𝑥)) = log(𝐹(𝑥)/(1 − 𝐹(𝑥)) ) with 
(−∞,∞) as the support of the random variable 𝑇. 
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Aljarrah el al. (2014) have generalized the 𝑇 − 𝑋(𝑊) family were proposed by Alzaatreh 

et al. (2013a), this new generalized family of distributions is called 𝑇 − 𝑋{𝑌} family. 

This family is depending on the quantile of the random variable 𝑌, 𝑄𝑌, where the random 

variable 𝑌 has the CDF 𝑃(𝑦). They defined 𝑊(𝜆) = 𝑄𝑌(𝜆) where 0 < 𝜆 < 1 which 

satisfies the conditions in (1.5). The CDF of the new family is defined as 

 𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
𝑄𝑌(𝐹(𝑥))

𝑎

= 𝑅{𝑄𝑌(𝐹(𝑥))} (1.8) 

 

and the corresponding PDF (if it exists) is defined as 

 𝑔(𝑥) =
𝑑

𝑑𝑥
𝐺(𝑥) =

𝑓(𝑥)

𝑝{𝑄𝑌(𝐹(𝑥))}
𝑟{𝑄𝑌(𝐹(𝑥))} (1.9) 

 

In this paper, a new 𝑊(∙) function is used; this function is depending on the tangent 

function with (−∞,∞) as the support of the random variable 𝑇. In Section 2, the family 

of 𝑇 − 𝑋 distributions depending on the tangent function is defined and some of its 

general properties are discussed: hazard function, quantile function, Rényi and Shannon 

entropies, symmetry, and existence of the non-central 𝑛𝑡ℎ moment. In Section 3, will 

define and discuss some new members as sub-families in the 𝑇 − 𝑋 family of 

distributions with different 𝑇 distributions: Normal−𝑋 sub-family, Cauchy−𝑋 sub-

family, and Generalized Error−𝑋 sub-family, also three members of the new sub-families 

are defined and discussed: the four-parameter Normal-Generalized hyperbolic secant 

distribution (𝑁𝐺𝐻𝑆), the four-parameter Gumbel-Generalized hyperbolic secant 

distribution (𝐺𝐺𝐻𝑆), and the five-parameter Generalized Error-Generalized hyperbolic 

secant distribution (𝐺𝐸𝐻𝑆). In Section 4, two real data sets are used to demonstrate the 

usefulness of this new family of distributions. In Section 5, the summary and conclusion. 

The programs were used to compute the results in sections 4.1 and 4.2 were written in 𝑅 

3.3.1 programming language (R Core Team, 2016). These 𝑅 codes are available to the 

reader from the author. 

2. Generating new family of distributions using the tangent function 

In this section, a new class of distributions will be proposed. Let 𝑇 be a continuous 

random variable with PDF 𝑟(𝑡) and CDF 𝑅(𝑡), defined on (−∞,∞), and let 𝑋 be any 

continuous random variable with PDF 𝑓(𝑥) and CDF 𝐹(𝑥).  
 

Defined 𝑊(𝐹(𝑥)) = 𝑎 + 𝑏 tan(𝜋(𝐹(𝑥) − 1/2)), where 𝑎 ∈ ℝ and 𝑏 ∈ (0,∞), note that 

𝑊 is satisfied the conditions in (1.5): 

 

i. Since 𝜋(𝐹(𝑥) − 1/2) ∈ [−𝜋/2, 𝜋/2], then 𝑡 = 𝑎 + 𝑏 tan(𝜋(𝐹(𝑥) − 1/2)) ∈
(−∞,∞). 

ii. The tangent function is differentiable and monotonically non-decreasing on [−𝜋/
2, 𝜋/2]. 

iii. Since 𝐹(𝑥) → 0 as 𝑥 → −∞, then 𝜋(𝐹(𝑥) − 1/2) → −𝜋/2 and 𝑎 + 𝑏 tan(𝜋(𝐹(𝑥) −
1/2)) → −∞. Similarly, 𝐹(𝑥) → 1 as 𝑥 → ∞, then 𝜋(𝐹(𝑥) − 1/2) → 𝜋/2 and 𝑎 +
𝑏 tan(𝜋(𝐹(𝑥) − 1/2)) → ∞. 
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The CDF of the new 𝑇 − 𝑋 family of distributions is defined by 

 𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
𝑎+𝑏 tan(𝜋(𝐹(𝑥)−1/2))

−∞ 

= 𝑅 {𝑎 + 𝑏 tan(𝜋 (𝐹(𝑥) −
1

2
))} (2.1) 

 

The corresponding PDF of this family is given by 

 𝑔(𝑥) = 𝜋𝑏 sec2 (𝜋 (𝐹(𝑥) −
1

2
)) 𝑓(𝑥) 𝑟 {𝑎 + 𝑏 tan(𝜋 (𝐹(𝑥) −

1

2
))} (2.2) 

 

Note: Aljarrah et al (2014) were mentioned about 𝑇 − 𝑋{Cauchy} family in his Table 1. 

The family in (2.1) is the same their family.  

 

Denote 𝑋𝑓 is the random variable of 𝑋 with PDF 𝑓, and 𝑋𝑔 is the random variable of 𝑋 

with PDF 𝑔. Since 𝑋𝑓 is any continuous random variable, so it can be easily derived 

many new 𝑇 − 𝑋 family of distributions. 

 

Some remarks on the 𝑇 − 𝑋 family of distributions defined in (2.1): 

 

(a) Since for any angle 𝜃, sec(𝜋/2 − 𝜃) = csc(𝜃) and tan(𝜃 − 𝜋/2) = −cot(𝜃), the 

PDF in (2.2) can be written as 

 𝑔(𝑥) = 𝜋𝑏 csc2(𝜋𝐹(𝑥)) 𝑓(𝑥) 𝑟{𝑎 − 𝑏 cot(𝜋𝐹(𝑥))} (2.3) 

 

and the CDF in (2.1) can be written as 

 𝐺(𝑥) = 𝑅{𝑎 − 𝑏 cot(𝜋𝐹(𝑥))} (2.4) 

 

(b) The relation 𝐺(𝑥) = 𝑅(𝑎 − 𝑏 cot(𝜋𝐹(𝑥))) = 𝑅(𝑡) gives the relationship between the 

random variable 𝑋𝑔 with PDF in (2.3) and the random variable 𝑇, where 𝑇 = 𝑎 −

𝑏 cot(𝜋𝐹(𝑋𝑔)), and this implies 𝑋𝑔 = 𝐹
−1{cot−1((𝑎 − 𝑇)/𝑏) /𝜋}. This result it can 

be used for: Simulating the random variable 𝑋𝑔 by first simulating the random 

variable 𝑇 from PDF 𝑟(𝑡), and then applying the transformation 𝑋𝑔 =

𝐹−1{cot−1((𝑎 − 𝑇)/𝑏) /𝜋}. Also, computing the central moments of the random 

variable 𝑋𝑔by 𝐸[𝑋𝑔
𝑛] = 𝐸{[𝐹−1{cot−1((𝑎 − 𝑇)/𝑏) /𝜋}]

𝑛
}. 

(c) The moment generating function of the random variable 𝑋𝑔, 𝑀𝑋𝑔(𝑠), where −∞ <

𝑠 < ∞, is defined as 

 𝑀𝑋𝑔
(𝑠) = 𝐸(𝑒𝑠𝑋𝑔) = 𝐸 (𝑒

1

𝜋
𝐹−1{cot−1(

𝑎−𝑇

𝑏
)}𝑠) =∑

1

𝑖!

∞

𝑖=0

(
𝑠

𝜋
)
𝑖

𝐸 [(𝐹−1 {cot−1 (
𝑎 − 𝑇

𝑏
)})

𝑖

] (2.5) 

(d) If 𝑎 = 0 and 𝑏 = 1, and the random variable 𝑇 has the standard Cauchy Distribution, 

then the CDF of the random variable 𝑋𝑔, 𝐺(𝑥), in (2.4) reduces to 𝐹(𝑥). Similarly, if 

𝑎 = 0 and 𝑏 = 1, and the random variable 𝑋𝑔 has the standard Cauchy Distribution, 

then the CDF of the random variable 𝑋𝑔, 𝐺(𝑥), in (2.4) reduces to 𝑅(𝑥). 
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(e) The hazard function, ℎ𝑔(𝑥) = 𝑔(𝑥)/(1 − 𝐺(𝑥)), for the random variable 𝑋𝑔 in (2.4) 

is defined as 

 ℎ𝑔(𝑥) = 𝜋𝑏 csc
2(𝜋𝐹(𝑥)) 𝑓(𝑥) ℎ𝑟{𝑎 − 𝑏 cot(𝜋𝐹(𝑥))} (2.6) 

 

where ℎ𝑟 is the hazard function of the random variable 𝑇 with CDF 𝑅(𝑡). 
 

Theorem 1: Let 0 < 𝜆 < 1, the quantile function of the 𝑇 − 𝑋 family of distributions 

defined in (2.4) is given by 

 𝑄𝑋𝑔(𝜆) = 𝑄𝑋𝑓 (
1

𝜋
cot−1 (

𝑎 − 𝑄𝑇(𝜆)

𝑏
)) = 𝐹−1 {

1

𝜋
cot−1 (

𝑎 − 𝑅−1(𝜆)

𝑏
)} (2.7) 

 

where𝑄𝑋𝑓(𝜆) = 𝐹
−1(𝜆) is the quantile function of the random variable 𝑋𝑓 with CDF 

𝐹(𝑥) and 𝑄𝑇(𝜆) = 𝑅
−1(𝜆) is the quantile function of the random variable 𝑇 with CDF 

𝑅(𝑡). 
 

Proof: By solving 𝐺 (𝑄𝑋𝑔(𝜆)) = 𝜆 for 𝑥, where 𝑥 = 𝑄𝑋𝑔(𝜆), we get 𝜆 = 𝐺(𝑄𝑋𝑔(𝜆)) =

𝑅{𝑎 − 𝑏 cot(𝜋𝐹(𝑄𝑋𝑔(𝜆)))}, which implies 𝑅−1(𝜆) = 𝑎 − 𝑏 cot(𝜋𝐹(𝑄𝑋𝑔(𝜆))), and so 

(𝑎 − 𝑅−1(𝜆))/𝑏 = cot(𝜋𝐹(𝑄𝑋𝑔(𝜆))). 

 

Now, since 𝜋𝐹(𝑄𝑋𝑔(𝜆)) ∈ [0, 𝜋], we can take the inverse of the cotangent function for 

the both sides, and we obtain (1/𝜋) cot−1((𝑎 − 𝑅−1(𝜆))/𝑏) = 𝐹(𝑄𝑋𝑔(𝜆)), and 𝐹−1{(1/

𝜋) cot−1((𝑎 − 𝑅−1(𝜆))/𝑏)} = 𝑄𝑋𝑔(𝜆). Hence, 𝑄𝑋𝑓((1/𝜋) cot
−1((𝑎 − 𝑄𝑇(𝜆))/𝑏)) =

𝑄𝑋𝑔(𝜆) which is the result in (2.7). 

 

Entropy has wide applications in science, engineering and probability theory, for a 

random variable 𝑋𝑔, the entropy is a measure of the variation of the uncertainty. The 

Rényi entropy (the spectrum of Rény information) of order α, of a random variable 𝑋𝑔 

with PDF 𝑔(𝑥), is defined as 𝐻𝛼(𝑋𝑔) = − log([𝐻(𝛼)]
1/(𝛼−1)) where 𝐻(𝛼) =

∫ 𝑔(𝑥)𝑔𝛼−1(𝑥)𝑑𝑥
∞

−∞
= 𝐸[𝑔𝛼−1(𝑋𝑔)], 𝛼 ≥ 0 and 𝛼 ≠ 1 (Rényi, 1961). 

 

Let the random variable 𝑋𝑔 follow the 𝑇 − 𝑋 family of distributions defined in (2.4), then 

the Rényi entropy of the random variable 𝑋𝑔, 𝐻𝛼(𝑋𝑔), is given by 

 

𝐻𝛼(𝑋𝑔) =
1

1 − 𝛼
log ((𝜋𝑏)𝛼∫ csc2𝛼 (𝜋(𝐹(𝑥))) 𝑓𝛼(𝑥)𝑟𝛼{𝑎

∞

−∞

− 𝑏 cot(𝜋𝐹(𝑥))}𝑑𝑥) 

(2.8) 

 

The Shannon entropy is defined by Shannon (1948), and it is considered as a special case 

of the Rényi entropy when 𝛼 → 1. The Shannon entropy of a random variable 𝑋 with 

PDF 𝑔(𝑥), is defined as 𝐸(− log(𝑔(𝑋𝑔))). 
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Theorem 2: Let the random variable 𝑋𝑔 follow the 𝑇 − 𝑋 family of distributions defined 

in (2.4), then the Shannon entropy of the random variable 𝑋𝑔, 𝜂𝑋𝑔, is given by 

 
𝜂𝑋𝑔 = log (

𝜋

𝑏
) + 2𝐸 {log (𝐹(𝑋𝑔))} + 2∑𝐶𝑘𝐸 {[𝐹(𝑋𝑔)]

2𝑘
}

∞

𝑘=1

+ 𝐸 {log (𝑞𝑋𝑓(𝑆(𝑇)))} + 𝜂𝑇 

(2.9) 

 

where 𝐶𝑘 = (−1)
𝑘(2𝜋)2𝑘𝐵2𝑘/(2𝑘(2𝑘)!) and 𝐵𝑘 is the Bernoulli number, 𝐹 is the CDF 

of a random variable 𝑋𝑓, 𝑆(𝑇) = cot−1((𝑎 − 𝑇)/𝑏) /𝜋, 𝑞𝑋𝑓(𝜆) = 1/𝑓(𝐹
−1(𝜆)) =

1/𝑓(𝑄𝑋𝑓(𝜆)) is the quantile density function of 𝑋𝑓, and 𝜂𝑇 is the Shannon entropy of the 

random variable 𝑇 with PDF 𝑟(𝑡). 
 

Proof: The random variable𝑇 = 𝑎 − 𝑏 cot(𝜋𝐹(𝑋𝑔))has the PDF𝑟(𝑡), and the random 

variable 𝑋𝑔 = 𝐹
−1{𝑆(𝑇)} = 𝑄𝑋𝑓(𝑆(𝑇)) has the PDF 𝑔(𝑥). The function 𝑔(𝑥) in (2.3) 

becomes 

𝑔(𝑋𝑔) = 𝜋𝑏 csc
2 (𝜋𝐹(𝑋𝑔)) 𝑓(𝐹

−1{𝑆(𝑇)})𝑟(𝑇) 

            = 𝜋𝑏(1/ sin2(𝜋𝐹(𝑋𝑔)))(1/𝑞𝑋𝑓(𝑆(𝑇))) 𝑟(𝑇) 

, then − log(𝑔(𝑋𝑔)) = − log(𝜋𝑏) + 2 log(sin(𝜋𝐹(𝑋𝑔))) + log(𝑞𝑋𝑓(𝑆(𝑇))) − log(𝑟(𝑇)) 

and by taking the expectation for the both sides, we get 

 

𝐸 (− log (𝑔(𝑋𝑔)))

= − log(𝜋𝑏) + 2𝐸 [log (sin (𝜋𝐹(𝑋𝑔)))]

+ 𝐸 {log (𝑞𝑋𝑓(𝑆(𝑇)))} + 𝜂𝑇 

(2.10) 

 

By using the logarithm of sine series expansion from Jeffrey and Zwillinger (2007, p. 55) 

 log(sin(𝜋𝑢)) = log(𝜋𝑢) +∑𝐶𝑘𝑢
2𝑘

∞

𝑘=1

 (2.11) 

 

where 𝐶𝑘 = (−1)
𝑘(2𝜋)2𝑘𝐵2𝑘/(2𝑘(2𝑘)!), 𝐵𝑘 is the Bernoulli number, and 0 < 𝑢 < 𝜋.  

 

This implies  

 

𝐸 [log (sin (𝜋𝐹(𝑋𝑔)))]

= log(𝜋) + 𝐸 {log (𝐹(𝑋𝑔))} +∑𝐶𝑘𝐸 {[𝐹(𝑋𝑔)]
2𝑘
}

∞

𝑘=1

 
(2.12) 

 

Now substitute (2.12) in (2.10) to get the result in (2.9). 

 

Theorem 3: Let 𝑎 = 0 and the PDF 𝑓(𝑥) of the random variable 𝑋𝑓 be symmetric 

about 𝑥 = 𝑑. The PDF 𝑔(𝑥) of the random variable 𝑋𝑔 is symmetric about 𝑥 = 𝑑 if and 

only if the PDF 𝑟(𝑡) of the random variable 𝑇 is symmetric about𝑡 = 0. 
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Proof: Suppose that the PDF 𝑓(𝑥) is symmetric about 𝑥 = 𝑑, then for any real number 𝑥 

we have 𝑓(𝑥 + 𝑑) = 𝑓(𝑑 − 𝑥) and 𝐹(𝑥 + 𝑑) = 1 − 𝐹(𝑑 − 𝑥). 
Suppose that the PDF 𝑔(𝑥) is symmetric about 𝑥 = 𝑑, then for any real number 𝑥 we 

have 𝑔(𝑥 + 𝑑) = 𝑔(𝑑 − 𝑥) and 𝐺(𝑥 + 𝑑) = 1 − 𝐺(𝑑 − 𝑥). Thus, from (1.8) we have 

𝐺(𝑥 + 𝑑) = 𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} and 𝐺(𝑑 − 𝑥) = 𝑅{−𝑏 cot(𝜋𝐹(𝑑 − 𝑥))}. This 

implies 𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} = 1 − 𝑅{−𝑏 cot(𝜋𝐹(𝑑 − 𝑥))}, now since 𝑓(𝑥) is 

symmetric about 𝑥 = 𝑑, that is, 𝐹(𝑥 + 𝑑) = 1 − 𝐹(𝑑 − 𝑥), and since cot(𝜋 − 𝜃) =
−cot(𝜃), we get 

𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} = 𝑅{−𝑏 cot(𝜋[1 − 𝐹(𝑑 − 𝑥)])} = 𝑅{𝑏 cot(𝜋𝐹(𝑑 − 𝑥))} 

and then 𝑅{𝑏 cot(𝜋𝐹(𝑑 − 𝑥))} = 1 − 𝑅{−𝑏 cot(𝜋𝐹(𝑑 − 𝑥))}. Now since 𝑇𝑋𝑔 =

−𝑏 cot(𝜋𝐹(𝑋𝑔)), let 𝑡𝑑−𝑥 = −𝑏 cot(𝜋𝐹(𝑑 − 𝑥)), and we obtain 𝑅{0 − 𝑡𝑑−𝑥} = 1 −

𝑅{0 + 𝑡𝑑−𝑥}. Hence, the PDF 𝑟(𝑡) of the random variable 𝑇 is symmetric about 𝑡 = 0. 

 

Conversely, suppose that the PDF 𝑟(𝑡) is symmetric about 𝑡 = 0, then for any real 

number 𝑡, 𝑟(𝑡) = 𝑟(−𝑡) and 𝑅(𝑡) = 1 − 𝑅(−𝑡). Let 𝑡𝑥+𝑑 = −𝑏 cot(𝜋𝐹(𝑥 + 𝑑)), so 

𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} = 𝑅{𝑡𝑥+𝑑} = 1 − 𝑅{−𝑡𝑥+𝑑} = 1 − 𝑅{𝑏 cot(𝜋𝐹(𝑥 + 𝑑))}. From 

(2.1), we have 𝐺(𝑥) = 𝑅{−𝑏 cot(𝜋𝐹(𝑥))}, so 𝐺(𝑥 + 𝑑) = 𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} =

𝑅{𝑡𝑥+𝑑}, and 1 − 𝐺(𝑑 − 𝑥) = 1 − 𝑅{−𝑏 cot(𝜋𝐹(𝑑 − 𝑥))}. Now since 𝑓(𝑥) is 

symmetric about 𝑥 = 𝑑 and since cot(𝜋 − 𝜃) = −cot(𝜃), then 1 − 𝐺(𝑑 − 𝑥) = 1 −

𝑅{𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} = 1 − 𝑅{−𝑡𝑥+𝑑}, this implies 𝐺(𝑥 + 𝑑) = 1 − 𝐺(𝑑 − 𝑥). Hence, 

the PDF 𝑔(𝑥) of the random variable 𝑋𝑔 is symmetric about 𝑥 = 𝑑.                                  

Conversely, suppose that the PDF 𝑟(𝑡) is symmetric about 𝑡 = 0, then 𝑟(𝑡) = 𝑟(−𝑡) and 

𝑅(𝑡) = 1 − 𝑅(−𝑡), let 𝑡𝑥+𝑑 = −𝑏 cot(𝜋𝐹(𝑥 + 𝑑)), so 𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} =

𝑅{𝑡𝑥+𝑑} = 1 − 𝑅{−𝑡𝑥+𝑑} = 1 − 𝑅{𝑏 cot(𝜋𝐹(𝑥 + 𝑑))}.From (10), we have 𝐺(𝑥) =

𝑅{−𝑏 cot(𝜋𝐹(𝑥))}, so 𝐺(𝑥 + 𝑑) = 𝑅{−𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} = 𝑅{𝑡𝑥+𝑑}, and 1 −

𝐺(𝑑 − 𝑥) = 1 − 𝑅{−𝑏 cot(𝜋𝐹(𝑑 − 𝑥))}. Now since 𝑓(𝑥) is symmetric about 𝑥 = 𝑑 and 

since cot(𝜋 − 𝜃) = −cot(𝜃), then 1 − 𝐺(𝑑 − 𝑥) = 1 − 𝑅{𝑏 cot(𝜋𝐹(𝑥 + 𝑑))} = 1 −

𝑅{−𝑡𝑥+𝑑}, this implies 𝐺(𝑥 + 𝑑) = 1 − 𝐺(𝑑 − 𝑥). Hence, the PDF 𝑔(𝑥) of the random 

variable 𝑋𝑔 is symmetric about 𝑥 = 𝑑. 

 

Theorem 4: Let the random variable 𝑋𝑓 with PDF 𝑓(𝑥) and CDF 𝐹(𝑥) has the non-

central 𝑛𝑡ℎ moment 𝐸[𝑋𝑓
𝑛] ≤ 𝐸[|𝑋𝑓|

𝑛
] < ∞, and the random variable 𝑇 with PDF 𝑟(𝑡) 

and CDF 𝑅(𝑡) has the non-central 𝑛𝑡ℎ moment 𝐸[𝑇𝑓
𝑛] ≤ 𝐸[|𝑇|𝑓

𝑛] < ∞, where −∞ < 𝑇 <

∞, then the random variable 𝑋𝑔 with PDF 𝑔(𝑥) and CDF 𝐺(𝑥) defined in (2.4) has the 

non-central 𝑛𝑡ℎ moment 𝐸[𝑋𝑔
𝑛] ≤ 𝐸[|𝑋𝑔|

𝑛
] < ∞ and satisfies the following 

 𝐸[|𝑋𝑔|
𝑛
] < 𝜋𝐸[|𝑋𝑓|

𝑛
] (

3

2𝑏
∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

−
3𝑎

2𝑏
+ (

3𝑎

2𝑏
+
4

𝜋
)𝑅(𝑏) −

8

𝜋
𝑅(−𝑏)) (2.13) 

 

Proof: By definition, 
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𝐸[|𝑋|𝑓
𝑛] = ∫|𝑥|𝑛𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫ |𝑥|𝑛𝑓(𝑥)𝑑𝑥

𝐹−1{
1

𝜋
cot−1(

𝑎−𝑇

𝑏
)}

−∞

+ ∫ |𝑥|𝑛𝑓(𝑥)𝑑𝑥

∞

𝐹−1{
1

𝜋
cot−1(

𝑎−𝑇

𝑏
)}

 

                                                  ≥ ∫ |𝑥|𝑛𝑓(𝑥)𝑑𝑥

∞

𝐹−1{
1

𝜋
cot−1(

𝑎−𝑇

𝑏
)}

 

                                                 ≥ |𝐹−1 {
1

𝜋
cot−1 (

𝑎 − 𝑇

𝑏
)}|

𝑛

∫ 𝑓(𝑥)𝑑𝑥

∞

𝐹−1{
1

𝜋
cot−1(

𝑎−𝑇

𝑏
)}

 

                                                = |𝐹−1 {
1

𝜋
cot−1 (

𝑎 − 𝑇

𝑏
)}|

𝑛

(
1

𝜋
[𝜋 − cot−1 (−

𝑇 − 𝑎

𝑏
)]) 

 

This implies, |𝐹−1{cot−1((𝑎 − 𝑇)/𝑏) /𝜋}|
𝑛
≤ 𝐸[|𝑋|𝑓

𝑛]([𝜋 − cot−1(−(𝑇 − 𝑎)/𝑏)]/

𝜋)−1, since cot−1(𝑢) = 𝜋 − cot−1(−𝑢), we get |𝐹−1{cot−1((𝑎 − 𝑇)/𝑏) /𝜋}|
𝑛
≤

𝜋𝐸[|𝑋|𝑓
𝑛](cot−1((𝑇 − 𝑎)/𝑏))

−1
. By Polyanin and Manzhirov (2008, p. 680) and Jeffrey 

and Zwillinger (2007, p. 61), cot−1((𝑇 − 𝑎)/𝑏) can be written as 

 cot−1 (
𝑇 − 𝑎

𝑏
) =

{
 
 

 
 ∑

(−1)𝑘𝑏2𝑘+1

(2𝑘 + 1)
(𝑇 − 𝑎)−(2𝑘+1)

∞

𝑘=0

            ; |𝑇 − 𝑎| > 𝑏

𝜋

2
−∑

(−1)𝑘𝑏−(2𝑘+1)

(2𝑘 + 1)
(𝑇 − 𝑎)2𝑘+1

∞

𝑘=0

    ; |𝑇 − 𝑎| ≤ 𝑏

 (2.14) 

 

When |𝑇 − 𝑎| ≤ 𝑏, we have −𝑏2𝑘+1 ≤ (𝑇 − 𝑎)2𝑘+1 ≤ 𝑏2𝑘+1 for all 𝑘 = 0,1,2, …, and 

−𝑏2𝑘+1 ≤ −(𝑇 − 𝑎)2𝑘+1 ≤ 𝑏2𝑘+1, then cot−1((𝑇 − 𝑎)/𝑏) = 𝜋/2 +

∑ (−1)𝑘𝑏−(2𝑘+1)(−(𝑇 − 𝑎))
2𝑘+1

/(2𝑘 + 1)∞
𝑘=0 ≥ 𝜋/2 − ∑ (−1)𝑘/(2𝑘 + 1) =∞

𝑘=0

𝜋/2 − cot−1(1) = 𝜋/2 − 𝜋/4 = 𝜋/4. 

 

Hence, (cot−1((𝑇 − 𝑎)/𝑏))
−1
≤ 4/𝜋. 

 

When |𝑇 − 𝑎| > 𝑏, we have (𝑇 − 𝑎)2𝑘+1 > 𝑏2𝑘+1 or  (𝑇 − 𝑎)2𝑘+1 < −𝑏2𝑘+1 for all 𝑘 =
0,1,2, …, so 𝑏2𝑘+1/(𝑇 − 𝑎)2𝑘+1 < 1 or 𝑏2𝑘+1/(𝑇 − 𝑎)2𝑘+1 > −1 for all 𝑘 = 0,1,2, …. 

 

If 𝑏2𝑘+1/(𝑇 − 𝑎)2𝑘+1 < 1, we have 

 

∑
(−1)𝑘𝑏2𝑘+1

(2𝑘 + 1)
(𝑇 − 𝑎)−(2𝑘+1) =

𝑏

(𝑇 − 𝑎)
−

𝑏3

3(𝑇 − 𝑎)3
+

𝑏5

5(𝑇 − 𝑎)5
−

𝑏7

7(𝑇 − 𝑎)7
+⋯

∞

𝑘=0
 

               >
𝑏

(𝑇 − 𝑎)
−

𝑏3

3(𝑇 − 𝑎)3
= 𝑏

3(𝑇 − 𝑎)2 − 𝑏2

3(𝑇 − 𝑎)3
= 𝑏

2(𝑇 − 𝑎)2 + (𝑇 − 𝑎)2 − 𝑏2

3(𝑇 − 𝑎)3
 

               > 𝑏
2(𝑇 − 𝑎)2

3(𝑇 − 𝑎)3
=

2𝑏

3(𝑇 − 𝑎)
. 
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Hence, (cot−1((𝑇 − 𝑎)/𝑏))
−1
< 3(𝑇 − 𝑎)/2𝑏. 

 

If (𝑇 − 𝑎)2𝑘+1 < −𝑏2𝑘+1, then (𝑇 − 𝑎)−(2𝑘+1) > −𝑏−(2𝑘+1), and we have 

cot−1 (
(𝑇 − 𝑎)

𝑏
) =∑

(−1)𝑘𝑏2𝑘+1(𝑇 − 𝑎)−(2𝑘+1)

(2𝑘 + 1)

∞

𝑘=0
 

                      > −∑ (−1)𝑘/(2𝑘 + 1) = −cot−1(1) = −𝜋/4∞
𝑘=0 . 

 

Hence, (cot−1((𝑇 − 𝑎)/𝑏))
−1
< −4/𝜋. 

Now,  

𝐸 {([cot−1 (
𝑇 − 𝑎

𝑏
)])

−1

} = ∫ ([cot−1 (
𝑇 − 𝑎

𝑏
)])

−1

𝑟(𝑡)𝑑𝑡

∞

−∞

= 𝐼1 + 𝐼2 + 𝐼3 

 

where 

𝐼1 = ∫ ([cot−1 (
𝑡 − 𝑎

𝑏
)])

−1

𝑟(𝑡)𝑑𝑡

−𝑏

−∞

< −
4

𝜋
∫ 𝑟(𝑡)𝑑𝑡

−𝑏

−∞

= −
4

𝜋
𝑅(−𝑏) 

𝐼2 = ∫([cot−1 (
𝑡 − 𝑎

𝑏
)])

−1

𝑟(𝑡)𝑑𝑡

𝑏

−𝑏

<
4

𝜋
∫𝑟(𝑡)𝑑𝑡

𝑏

−𝑏

=
4

𝜋
(𝑅(𝑏) − 𝑅(−𝑏)) 

and 

𝐼3 = ∫ ([cot−1 (
𝑡 − 𝑎

𝑏
)])

−1

𝑟(𝑡)𝑑𝑡

∞

𝑏

 

     <
3

2𝑏
∫(𝑡 − 𝑎)𝑟(𝑡)𝑑𝑡

∞

𝑏

 

     =
3

2𝑏
∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

−
3𝑎

2𝑏
∫ 𝑟(𝑡)𝑑𝑡

∞

𝑏

=
3

2𝑏
∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

−
3𝑎

2𝑏
(1 − 𝑅(𝑏)). 

 

So, 

|𝐹−1 {
1

𝜋
cot−1 (

𝑎 − 𝑇

𝑏
)}|

𝑛

≤ 𝜋𝐸[|𝑋|𝑓
𝑛] (cot−1 (

𝑇 − 𝑎

𝑏
))

−1

 

 

becomes 

𝐸 {|𝐹−1 {
1

𝜋
cot−1 (

𝑎 − 𝑇

𝑏
)}|

𝑛

}  ≤ 𝜋𝐸[|𝑋|𝑓
𝑛]𝐸 {(cot−1 (

𝑇 − 𝑎

𝑏
))

−1

} 

 

and from remark (𝑏) above, we get the result in (2.14). 

 

Suppose 𝑆(𝑥) = 𝑎 − 𝑏 cot(𝜋𝐹(𝑥)) and 𝐷(𝑥) = exp(−(𝑆(𝑥) − 𝜇)/𝜎). Table 1 shows a 

list of some examples of subfamilies of the 𝑇 − 𝑋 family of distributions defined in (2.4) 

using the tangent function for different 𝑇 random variables. 
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Table 1:  Some examples of the 𝑻 − 𝑿 family of distributions using the tangent 

function derived from different 𝑻 distributions 

The name of PDF𝒓(𝒕) The PDF 𝒓(𝒕) 
The PDF 𝒈(𝒙) of the 𝑻 − 𝑿 family of 

distributions defined in (𝟐. 𝟏) 

Normal 

(Gaussian) 

1

𝜎
𝜙 (
𝑡 − 𝜇

𝜎
) 

𝜋𝑏

𝜎
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)𝜙 (

𝑆(𝑥) − 𝜇

𝜎
) 

Cauchy 

1

𝜋𝜆 (1 + (
𝑡−𝜃

𝜆
)
2
)
 

𝑏

𝜆
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)

1

(1 + (
𝑆(𝑥)−𝜃

𝜆
)
2

)
 

Extreme Value Type I 

(Gumbel) 

1

𝜎
exp (−𝑒

−(
𝑡−𝜇

𝜎
)
) 𝑒

−(
𝑡−𝜇

𝜎
)
 

𝜋𝑏

𝜎
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)exp(−𝐷(𝑥))𝐷(𝑥) 

Laplace 
1

2𝜎
exp (− |

𝑡 − 𝜇

𝜎
|) 

𝜋𝑏

2𝜎
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥) exp (− |

𝑆(𝑥)− 𝜇

𝜎
|) 

Logistic 
1

𝜎

exp (−(
𝑡−𝜇

𝜎
))

{1 + exp (−(
𝑡−𝜇

𝜎
))}

2 
𝜋𝑏

𝜎
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)

𝐷(𝑥)

(1 + 𝐷(𝑥))
2 

Student’s t 
1

√𝑣𝐵 (
1

2
,
𝑣

2
)
(1 +

𝑡2

𝑣
)

−(𝑣+1)/2

 
𝜋𝑏

√𝑣𝐵 (
1

2
,
𝑣

2
)
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥) (1 +

(𝑆(𝑥))
2

𝑣
)

−(𝑣+1)/2

 

Generalized Error 

(Generalized Normal) 

1

2𝑘+1𝜎Γ(𝑘 + 1)
𝑒
−
1

2
|
𝑡−𝜇

𝜎
|

1
𝑘

 
𝜋𝑏

2𝑘+1𝜎𝛤(𝑘 + 1)
sec2(𝜋𝐹(𝑥)) 𝑓(𝑥)𝑒

−
1

2
|
𝑆(𝑥)−𝜇

𝜎
|

1
𝑘

 

3. Some sub-families of the 𝑻 − 𝑿 family of distributions with different 𝑻 

distributions 

The subfamilies from the 𝑇 − 𝑋 family of distributions defined in (2.4) can be gotten in 

two different ways: fix the random variable 𝑋𝑓 distribution and change the random 

variable 𝑇 distributions, and the other fix the variable 𝑇 distribution and change the 

random variable 𝑋𝑓 distributions. 

 

In Table 1 above, the random variable 𝑋𝑓 has been fixed, and by changing the random 

variable 𝑇 distributions, one can be gotten several such sub-families. For example: let the 

random variable 𝑇 be normally distributed, we generate a sub-family of Normal−𝑋 

distributions. 

 

In the following sub-sections, some properties of the following sub-families will be 

discussed: Normal−𝑋 sub-family, Cauchy−𝑋 sub-family, and Generalized Error−𝑋 sub-

family. 

3.1 The Normal−𝑿 Sub-Family 

Let the random variable 𝑇 follow a normal distribution with location parameter 𝜇 and 

scale parameter 𝜎, 𝑇~𝑁(𝜇, 𝜎), then the PDF 𝑟(𝑡; 𝜇, 𝜎) = (1/√2𝜋𝜎) exp (−((𝑡 − 𝜇)/

𝜎)
2
/2) = (1/𝜎)𝜙((𝑡 − 𝜇)/𝜎), 𝑡 ∈ ℝ, 𝜇 ∈ ℝ, 𝜎 > 0, and the CDF 𝑅(𝑡) = Φ((𝑡 − 𝜇)/

𝜎), where Φ(𝑦) = (1/√2𝜋) ∫ exp(−𝑡2/2) 𝑑𝑡
𝑦

−∞
. By substituting in (2.3), the PDF 𝑔(𝑥) 

of the Normal−𝑋 sub-family is defined as 

 𝑔(𝑥) =
𝜋

𝜈
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)𝜙 (

1

𝜈
[𝛾 − cot(𝜋𝐹(𝑥))]) (3.1) 
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where 𝛾 = 𝑐/𝑏, 𝑐 = 𝑎 − 𝜇 ∈ ℝ and 𝜈 = 𝜎/𝑏 > 0, by substituting in (2.4), the CDF 

𝐺(𝑥) of the Normal−𝑋 sub-family is defined as 

 𝐺(𝑥) = Φ(
1

𝜈
[𝛾 − cot(𝜋𝐹(𝑥))]) (3.2) 

 

Lemma 1: Let 0 < 𝜆 < 1, the quantile function of the Normal−𝑋 sub-family of 

distributions defined in (3.2) is given by 

 𝑄𝑋𝑔(𝜆) = 𝐹
−1 {

1

𝜋
cot−1 ((𝛾 − 𝜈Φ−1(𝜆)))} (3.3) 

 

where 𝐹−1(𝜆) = 𝑄𝑋𝑓(𝜆) is the quantile function of the random variable 𝑋𝑓 with CDF 

𝐹(𝑥). 
 

Proof: By equation (2.7) in Theorem 1 above, since the quantile of the random variable 

𝑇 with CDF 𝑅(𝑡) is the quantile of the normal distribution with parameters 𝜇 and 𝜎, and 

it is given by 𝑄𝑇(𝜆) = 𝑅
−1(𝜆) = 𝜇 + 𝜎Φ−1(𝜆), hence it can be easily gotten the result in 

(3.3). 

 

Lemma 2: The Shannon entropy of the Normal−𝑋 sub-family of distributions defined in 

(3.2), 𝜂𝑋𝑔, is given by 

 

𝜂𝑋𝑔 = (
3

2
log(𝜋) +

1

2
log(2) +

1

2
) + log(𝜈) + 2𝐸 {log (𝐹(𝑋𝑔))} 

            +2∑𝐶𝑘𝐸 {[𝐹(𝑋𝑔)]
2𝑘
}

∞

𝑘=1

+ 𝐸 {log (𝑞𝑋𝑓(𝑆(𝑇)))} 
(3.4) 

 

where 𝐶𝑘 = (−1)
𝑘(2𝜋)2𝑘𝐵2𝑘/(2𝑘(2𝑘)!) and 𝐵𝑘 is the Bernoulli number, 𝐹(𝑥) is the 

CDF of a random variable 𝑋𝑓, and 𝑆(𝑇) = cot−1((𝑎 − 𝑇)/𝑏) /𝜋, 𝑞𝑋𝑓(𝜆) =

1/𝑓(𝐹−1(𝜆)) = 1/𝑓(𝑄𝑋𝑓(𝜆)) is the quantile density function of 𝑋𝑓. 

 

Proof: Since the random variable 𝑇 has the normal distribution with parameters μand 𝜎, 

then its Shannon entropy, 𝜂𝑇 , is defined as log(2𝜋𝜎2𝑒) /2. Now substitute in (2.9) we get 

the result (3.4). 

 

Lemma 3: Let the random variable 𝑋𝑓 with PDF 𝑓(𝑥) and CDF 𝐹(𝑥) has the non-central 

𝑛𝑡ℎ moment 𝐸[𝑋𝑓
𝑛] ≤ 𝐸[|𝑋𝑓|

𝑛
] < ∞, and the random variable Tnormal distribution with 

parameters μ and σ, 𝑇~𝑁(𝜇, 𝜎), then the random variable 𝑋𝑔 with PDF 𝑔(𝑥) and CDF 

𝐺(𝑥) defined in (3.2) has the non-central 𝑛𝑡ℎ moment 𝐸[𝑋𝑔
𝑛] ≤ 𝐸[|𝑋𝑔|

𝑛
] < ∞ and 

satisfies the following 

 𝐸[|𝑋𝑔|
𝑛
] < 𝜋𝐸[|𝑋𝑓|

𝑛
] (
3𝜎

2𝑏
𝜙 (

𝑏 − 𝜇

𝜎
) +

3

2𝑏
(𝜇 − 𝑎)Φ(−𝑏) −

4

𝜋
Φ(𝑏)) (3.5) 

 

Proof: Since 𝑇~𝑁(𝜇, 𝜎), then 
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∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

=
1

√2𝜋𝜎
∫ 𝑡𝑒−

1

2
(
𝑡−𝜇

𝜎
)
2

𝑑𝑡

∞

𝑏

 

                    =
1

√2𝜋
∫ (

𝑡 − 𝜇

𝜎
) 𝑒−

1

2
(
𝑡−𝜇

𝜎
)
2

𝑑𝑡

∞

𝑏

+
1

√2𝜋𝜎
𝜇∫ 𝑒−

1

2
(
𝑡−𝜇

𝜎
)
2

𝑑𝑡

∞

𝑏

 

                    =
𝜎

√2𝜋
∫ 𝑦𝑒−

1

2
𝑦2𝑑𝑦

∞

(
𝑏−𝜇

𝜎
)

+ 𝜇∫
1

√2𝜋𝜎
𝑒−

1

2
(
𝑡−𝜇

𝜎
)
2

𝑑𝑡

∞

𝑏

 

                    = 𝜎 𝜙 (
𝑏 − 𝜇

𝜎
) + 𝜇(1 − Φ(𝑏)) < ∞ 

 

Hence, by substituting in (2.13), we obtain the result in (3.5). 

 

One example on this family, let the random variable 𝑋𝑓 follow Generalized Hyperbolic 

Secant (Generalized inverse-hyperbolic cosine) distribution with location parameter 

−∞ < 𝛼 < ∞ and scale parameter 𝛽 > 0, its PDF is given by 𝑓(𝑥; 𝛼, 𝛽) = (1/

2𝛽) sech[(𝜋/2)((𝑥 − 𝛼)/𝛽)] where −∞ < 𝑥 < ∞, and its CDF is given by 𝐹(𝑥) =

(1/2) + tan−1(sinh[(𝜋/2)((𝑥 − 𝛼)/𝛽)]) /𝜋, and its quantile function is given by 

𝐹−1(𝜆; 𝛼, 𝛽) = 𝑄𝑋𝑓(𝜆; 𝛼, 𝛽) = (𝜋/2)𝛽 sinh
−1{tan[𝜋(𝜆 − 1/2)]} + 𝛼. 

 

Now since cot−1(−𝑦) = 𝜋/2 + tan−1(𝑦), cot−1(−𝑦) = 𝜋 − cot−1(𝑦), and 

csc(cot−1(𝑦)) = √1 + 𝑦2, from (3.1) we get  

 𝑁𝐺𝐻𝑆(𝑥; 𝜽) =
𝜋

2𝛽𝜈
cosh [

𝜋

2
(
𝑥 − 𝛼

𝛽
)]𝜙 (

1

𝜈
(𝛾 + sinh [

𝜋

2
(
𝑥 − 𝛼

𝛽
)])) (3.6) 

 

where 𝑥 ∈ ℝ, 𝛼, 𝛾 ∈ ℝ and 𝛽, 𝜈 > 0, and 𝜽 = (𝛾, 𝜈, 𝛼, 𝛽)′. The CDF of 𝑁𝐺𝐻𝑆 is given 

by 𝐺(𝑥; 𝜽) = Φ([𝛾 + sinh[(𝜋/2)((𝑥 − 𝛼)/𝛽)]]/𝜈). The random variable 𝑋𝑔 with PDF 

in (3.6) is said to be follow a four-parameter Normal-Generalized Hyperbolic Secant 

distribution (𝑁𝐺𝐻𝑆). 

 

Plots in Figure 1 show the 𝑁𝐺𝐻𝑆 density function for different parameter values, the 

distribution can be symmetric, right skewed, left skewed, unimodal or bimodal. 

 

Lemma 4: Let 0 < 𝜆 < 1, the quantile function of the 𝑁𝐺𝐻𝑆distribution defined in (3.6) 

is given by 

 𝑄𝑁𝐺𝐻𝑆(𝜆) =
2𝛽

𝜋
sinh−1{𝜈Φ−1(𝜆) − 𝛾} + 𝛼 (3.7) 

Proof: By equation (3.3) in Lemma 1 above, since the quantile of the random variable 

𝑋𝑓 with CDF 𝐹(𝑥) is the quantile of the Generalized Hyperbolic Secant distribution with 

parameters 𝛼 and 𝛽, and it is given by 𝐹−1(𝜆; 𝛼, 𝛽) = 𝑄𝑋𝑓(𝜆; 𝛼, 𝛽) = (𝜋/

2)𝛽 sinh−1{tan[𝜋(𝜆 − 1/2)]} + 𝛼, since tan−1(𝑦) = cot−1(−𝑦) − 𝜋/2, hence it can be 

easily gotten the result in (3.7). 
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Figure 1   The PDF of Normal-Generalized hyperbolic secant distribution for various values of 

𝛾 and 𝜈. 
 

 

 
Lemma 5: Let the random variable 𝑋𝑔 has 𝑁𝐺𝐻𝑆 distribution, then the non-central 𝑛𝑡ℎ 

moment 𝐸[𝑋𝑔
𝑛] exists and satisfiesthe following inequality 

 𝐸[|𝑋𝑔|
𝑛
] < 𝜋 (∑(

𝑛

𝑖
) 𝛽𝑖𝛼𝑛−𝑖|𝐸𝑖|

𝑛

𝑖=0

)𝑚(𝑎, 𝑏, 𝜇, 𝜎) (3.8) 

 

where 𝐸𝑖
′𝑠 are the Euler numbers, and  

𝑚(𝑎, 𝑏, 𝜇, 𝜎) = ((3𝜎/2𝑏)𝜙((𝑏 − 𝜇)/𝜎) − (3𝑐/2𝑏)Φ(−𝑏) − (4/𝜋)Φ(𝑏)). 
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Proof:𝐸[|𝑋𝑓|
𝑛
] =

1

2𝛽
∫ |𝑥|𝑛 sech [

𝜋

2
(
𝑥−𝛼

𝛽
)] 𝑑𝑥

∞

−∞
=

1

𝛽
∫ 𝑥𝑛 sech [

𝜋

2
(
𝑥−𝛼

𝛽
)] 𝑑𝑥

∞

0
. 

Let 𝑢 =
𝜋

2
(
𝑥−𝛼

𝛽
) ⟹ 𝑥 =

2𝛽

𝜋
𝑢 + 𝛼 ⟹ 𝑑𝑥 =

2𝛽

𝜋
𝑑𝑢, then 

𝐸[|𝑋𝑓|
𝑛
] =

2

𝜋
∫ (

2𝛽

𝜋
𝑢 + 𝛼)

𝑛

sech(𝑢) 𝑑𝑢

∞

0

. 

 

By binomial theorem: 

(
2𝛽

𝜋
𝑢 + 𝛼)

𝑛

=∑(
𝑛

𝑖
)

𝑛

𝑖=0

(
2𝛽

𝜋
𝑢)

𝑖

𝛼𝑛−𝑖 

So, 

𝐸[|𝑋𝑓|
𝑛
] =

2

𝜋
∫∑(

𝑛

𝑖
)

𝑛

𝑖=0

(
2𝛽

𝜋
𝑢)

𝑖

𝛼𝑛−𝑖 sech(𝑢) 𝑑𝑢

∞

0

 

                =
1

𝜋
∑(

𝑛

𝑖
) (
2𝛽

𝜋
)
𝑖

𝛼𝑛−𝑖
𝑛

𝑖=0

∫ 𝑢𝑖 sech(𝑢) 𝑑𝑢

∞

0

 

                 =
2

𝜋
∑(

𝑛

𝑖
) (
2𝛽

𝜋
)
𝑖

𝛼𝑛−𝑖∫ 𝑢𝑖 sech(𝑢) 𝑑𝑢

∞

0

𝑛

𝑖=0

 

But  

∫ 𝑢𝑖 sech(𝑢) 𝑑𝑢

∞

0

=
1

2𝑖
Γ(𝑖 + 1) ∑(−1)𝑚 (

2

2𝑚 + 1
)
𝑖+1∞

𝑚=0

= (
𝜋

2
)
𝑖+1

|𝐸𝑖| 

where 𝐸𝑖
′𝑠 are the Euler numbers. For the odd-indexed all the Euler numbers are all zero, 

and for the even-indexed 𝐸0 = 1, 𝐸2 = −1, 𝐸4 = 5, 𝐸6 = −61,…. 

 

So, 

𝐸[|𝑋𝑓|
𝑛
] =

2

𝜋
∑(

𝑛

𝑖
) (
2𝛽

𝜋
)
𝑖

𝛼𝑛−𝑖 (
𝜋

2
)
𝑖+1

|𝐸𝑖|

𝑛

𝑖=0

=∑(
𝑛

𝑖
) 𝛽𝑖𝛼𝑛−𝑖|𝐸𝑖|

𝑛

𝑖=0

< ∞. 

Hence, by substituting in (3.5), we obtain the result in (3.8). 

3.2 The Gumbel−𝑿 Sub-Family 

Let the random variable 𝑇 follow a Gumbel distribution (Extreme value type I 

distribution) with location parameter 𝜇 and scale parameter 𝜎, 𝑇~𝐺(𝜇, 𝜎), then the PDF 

𝑟(𝑡; 𝜇, 𝜎) = (1/𝜎) exp(−exp(−(𝑡 − 𝜇)/𝜎)) exp(−(𝑡 − 𝜇)/𝜎), 𝑡 ∈ (−∞,∞), 𝜇 ∈ ℝ,
𝜎 > 0, and the CDF 𝑅(𝑡) = exp(− exp(−(𝑡 − 𝜇)/𝜎)). By substituting in (2.3), the PDF 

𝑔(𝑥) of the Gumbel−𝑋 sub-family is defined as 

 𝑔(𝑥) =
𝜋

𝜈
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)𝑒−𝑒

−
1
𝜈[
𝛾−cot(𝜋𝐹(𝑥))]

𝑒−
1

𝜈
[𝛾−cot(𝜋𝐹(𝑥))]

 (3.9) 

 

where 𝛾 = 𝑐/𝑏, 𝑐 = 𝑎 − 𝜇 ∈ ℝ and 𝜈 = 𝜎/𝑏 > 0, by substituting in (2.4), the CDF 𝐺(𝑥) 
of the Gumbel−𝑋 sub-family is defined as 

 𝐺(𝑥) = 𝑒−𝑒
−
1
𝜈[
𝛾−cot(𝜋𝐹(𝑥))]

 (3.10) 



On Generating a New Family of Distributions Using the Tangent Function 

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp471-499 485 

Lemma 6: Let 0 < 𝜆 < 1, the quantile function of the Gumbel−𝑋 sub-family of 

distributions defined in (3.10) is given by 

 
𝑄𝑋𝑔(𝜆) = 𝑄𝑋𝑓 (

1

𝜋
cot−1(𝛾 + 𝜈 log(− log(𝜆)))) 

              = 𝐹−1 {
1

𝜋
cot−1(𝛾 + 𝜈 log(− log(𝜆)))} 

(3.11) 

 

where 𝐹−1(𝜆) = 𝑄𝑋𝑓(𝜆) is the quantile function of the random variable 𝑋𝑓 with CDF 

𝐹(𝑥). 
 

Proof: By equation (2.7) in Theorem 1 above, since the quantile of the random variable 

𝑇 with CDF 𝑅(𝑡) is the quantile of the Gumbel distribution with parameters 𝜇 and 𝜎, and 

it is given by 𝑄𝑇(𝜆) = 𝑅
−1(𝜆) = 𝜇 − 𝜎 log(− log(𝜆)), hence it can be easily gotten the 

result in (3.11). 

 

Lemma 7: The Shannon entropy of the Gumbel−𝑋 sub-family of distributions defined in 

(3.10), 𝜂𝑋𝑔, is given by 

 

𝜂𝑋𝑔 = (log(𝜋) + 𝛾
∗ + 1) + log (𝛾) + 2𝐸 {log (𝐹(𝑋𝑔))} 

             +2∑𝐶𝑘𝐸 {[𝐹(𝑋𝑔)]
2𝑘
}

∞

𝑘=1

+ 𝐸 {log (𝑞𝑋𝑓(𝑆(𝑇)))} 
(3.12) 

 

where 𝐶𝑘 = (−1)
𝑘(2𝜋)2𝑘𝐵2𝑘/(2𝑘(2𝑘)!) and 𝐵𝑘 is the Bernoulli number, 𝛾∗ ≈ 0.5772  

is the Euler–Mascheroni constant, 𝐹(𝑥) is the CDF of a random variable 𝑋𝑓, 𝑆(𝑇) =

cot−1((𝑎 − 𝑇)/𝑏) /𝜋, and 𝑞𝑋𝑓(𝜆) = 1/𝑓(𝐹
−1(𝜆)) = 1/𝑓(𝑄𝑋𝑓(𝜆)) is the quantile 

density function of 𝑋𝑓. 

 

Proof: Since the random variable 𝑇 has the Gumbel distribution with parameters 𝜃 and 𝜆, 

then its Shannon entropy, 𝜂𝑇 , is defined as log (𝜎) + 𝛾∗ + 1, where 𝛾∗ ≈ 0.5772 is the 

Euler–Mascheroni constant. Now substitute in (2.9) we get the result (3.12). 

 

Lemma 8: Let the random variable 𝑋𝑓 with PDF 𝑓(𝑥) and CDF 𝐹(𝑥) has the non-central 

𝑛𝑡ℎ moment 𝐸[𝑋𝑓
𝑛] ≤ 𝐸[|𝑋𝑓|

𝑛
] < ∞, and the random variable 𝑇 Gumbel distribution 

with parameters 𝜇 and 𝜎, 𝑇~𝐺(𝜇, 𝜎), then the random variable 𝑋𝑔with PDF 𝑔(𝑥) and 

CDF 𝐺(𝑥) defined in (3.10) has the non-central 𝑛𝑡ℎ moment 𝐸[𝑋𝑔
𝑛] ≤ 𝐸[|𝑋𝑔|

𝑛
] < ∞ and 

satisfies the following 

 𝐸[|𝑋𝑔|
𝑛
] ≤ 𝜋𝐸[|𝑋𝑓|

𝑛
]𝑚(𝑎, 𝑏, 𝜇, 𝜎) (3.13) 

 

where 

𝑚(𝑎, 𝑏, 𝜇, 𝜎) =
3

2
{
𝜇

𝑏
−
𝜎

𝑏
− 𝜎𝑒−𝑒

−
𝑏−𝜇
𝜎 −

𝑎

𝑏
−
𝜎2

𝑏
𝐸𝑖 (−𝑒−

𝑏−𝜇

𝜎 )} + (
3𝑎

2𝑏
+

4

𝜋
)𝑅(𝑏) −

8

𝜋
𝑅(−𝑏)  

, 𝛾∗ ≈ 0.5772 is the Euler–Mascheroni constant and 𝐸𝑖(𝑦) = ∫ 𝑒𝑠𝑠−1𝑑𝑠
𝑦

−∞
; 𝑦 < 0 is the 

exponential integral function. 
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Proof: Since 𝑇~𝐺(𝜇, 𝜎), then 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

= 𝐸(𝑇) − ∫ 𝑡𝑟(𝑡)𝑑𝑡

𝑏

−∞

= 𝜇 − 𝛾𝜎 − ∫𝑡𝑟(𝑡)𝑑𝑡

𝑏

−∞

. 

But, 

∫𝑡𝑟(𝑡)𝑑𝑡

𝑏

−∞

= 𝜎 ∫(
𝑡 − 𝜇

𝜎
) 𝑒−𝑒

−
𝑡−𝜇
𝜎 𝑒−

𝑡−𝜇

𝜎 𝑑𝑡

𝑏

−∞

+ 𝜎
𝜇

𝜎
∫𝑒−𝑒

−
𝑡−𝜇
𝜎 𝑒−

𝑡−𝜇

𝜎 𝑑𝑡

𝑏

−∞

 

                      = 𝜎2 ∫ 𝑢𝑒−𝑒
−𝑢
𝑒−𝑢𝑑𝑢

𝑏−𝜇

𝜎

−∞

+ 𝜎𝜇 ∫ 𝑒−𝑒
−𝑢
𝑒−𝑢𝑑𝑢

𝑏−𝜇

𝜎

−∞

 

                      = 𝜎(𝑏 − 𝜇)𝑒−𝑒
−
𝑏−𝜇
𝜎 − 𝜎2 ∫ 𝑒−𝑒

−𝑢
𝑑𝑢

𝑏−𝜇

𝜎

−∞

+ 𝜎𝜇𝑒−𝑒
−
𝑏−𝜇
𝜎

 

                      = 𝜎𝑏𝑒−𝑒
−
𝑏−𝜇
𝜎 − 𝜎2 ∫ 𝑒−𝑒

−𝑢
𝑑𝑢

𝑏−𝜇

𝜎

−∞

= 𝜎𝑏𝑒−𝑒
−
𝑏−𝜇
𝜎 + 𝜎2 ∫ 𝑦−1𝑒𝑦𝑑𝑦

−𝑒
−
𝑏−𝜇
𝜎

−∞

 

                      = 𝜎𝑏𝑒−𝑒
−
𝑏−𝜇
𝜎 + 𝜎2𝐸𝑖 (−𝑒−

𝑏−𝜇

𝜎 ) 

 

Hence, 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

= 𝜇 − 𝜎 [𝛾 + 𝑏𝑒−𝑒
−
𝑏−𝜇
𝜎 + 𝜎𝐸𝑖 (−𝑒−

𝑏−𝜇

𝜎 )] < ∞ 

 

Now, by substituting in (2.13), we obtain the result in (3.13). Knowing that, 𝐸𝑖(𝑦) =

∫ 𝑒𝑠𝑠−1𝑑𝑠
𝑦

−∞
; 𝑦 < 0 is bounded functions Alzer (1997). 

 

One example on this family, let the random variable 𝑋𝑓 follow Generalized Hyperbolic 

Secant distribution with location parameter −∞ < 𝛼 < ∞ and scale parameter 𝛽 > 0 as 

in Section 3.1. From (3.9) we get 

 𝐺𝐺𝐻𝑆(𝑥; 𝜽) =
𝜋

2𝛽𝜈
cosh [

𝜋

2
(
𝑥 − 𝛼

𝛽
)] 𝑒−𝑒

−
1
𝜈(
𝛾+sinh[

𝜋
2(
𝑥−𝛼
𝛽

)])

𝑒
−
1

𝜈
(𝛾+sinh[

𝜋

2
(
𝑥−𝛼

𝛽
)])

 (3.14) 

 

where 𝑥 ∈ ℝ, 𝛼, 𝛾 ∈ ℝ and 𝛽, 𝜈 > 0, and 𝜽 = (𝛾, 𝜈, 𝛼, 𝛽)′. The CDF of 𝐺𝐺𝐻𝑆 is given by 

𝐺(𝑥; 𝜽) = 𝐺(𝑥) = exp{− exp(−[𝑐 + 𝑏 sinh[(𝜋/2)((𝑥 − 𝛼)/𝛽)]]/𝜎)}. The random 

variable 𝑋𝑔 with PDF in (3.14) is said to be follow a four-parameter Gumbel- 

Generalized Hyperbolic Secant distribution (𝐺𝐺𝐻𝑆). 

 

Plots in Figure 2 show the 𝐺𝐺𝐻𝑆 density function for different parameter values, the 

distribution can be right skewed, left skewed, unimodal or bimodal. 

 

Lemma 9: Let 0 < 𝜆 < 1, the quantile function of the 𝐺𝐺𝐻𝑆 distribution defined in 

(3.14) is given by 
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 𝑄𝐺𝐺𝐻𝑆(𝜆) = 𝛼 −
2𝛽

𝜋
sinh−1{𝛾 + 𝜈 log(− log(𝜆))} (3.15) 

 

Proof: By equation (3.11) in Lemma 6 above, since the quantile of the random variable 

𝑋𝑓 with CDF 𝐹(𝑥) is the quantile of the Generalized Hyperbolic Secant distribution with 

parameters 𝛼 and 𝛽, and it is given by 𝐹−1(𝜆; 𝛼, 𝛽) = 𝑄𝑋𝑓(𝜆; 𝛼, 𝛽) = (𝜋/

2)𝛽 sinh−1{tan[𝜋(𝜆 − 1/2)]} + 𝛼. Since tan−1(𝑦) = cot−1(−𝑦) − 𝜋/2and 

sinh−1(−𝑦) = − sinh−1(𝑦), the result in (3.15) follows. 

 

Lemma 10: Let the random variable 𝑋𝑔 has 𝐺𝐺𝐻𝑆 distribution, then the non-central 𝑛𝑡ℎ 

moment 𝐸[𝑋𝑔
𝑛] exists and satisfiesthe following inequality 

 𝐸[|𝑋𝑔|
𝑛
] < 𝜋 (∑(

𝑛

𝑖
) 𝛽𝑖𝛼𝑛−𝑖|𝐸𝑖|

𝑛

𝑖=0

)𝑚(𝑎, 𝑏, 𝜇, 𝜎) (3.16) 

 

where 𝐸𝑖
′𝑠 are the Euler numbers,  

𝑚(𝑎, 𝑏, 𝜇, 𝜎) =
3

2
{
𝜇

𝑏
−
𝜎𝛾∗

𝑏
− 𝜎𝑒−𝑒

−
𝑏−𝜇
𝜎 −

𝑎

𝑏
−
𝜎2

𝑏
𝐸𝑖 (−𝑒−

𝑏−𝜇

𝜎 )} + (
3𝑎

2𝑏
+
4

𝜋
)𝑅(𝑏) 

                                   −
8

𝜋
𝑅(−𝑏) 

and 𝛾∗is the Euler–Mascheroni constant, and𝐸𝑖(∙) is the exponential integral function. 

 

Proof: By using the same steps used in proving Lemma 5 above, and by substituting in 

(3.13), we obtain the result in (3.16). 
 

 

Figure 2 The PDF of Gumbel-Generalized hyperbolic secant distribution for various values of 𝛾 

and 𝜈. 
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3.3 The Generalized Error−𝑿 Sub-Family 

Let the random variable 𝑇 follow a Generalized Error Distribution (Generalized Normal 

Distribution or Exponential Power Distribution) with location parameter 𝜇, scale 

parameter 𝜎, and shape parameter 𝑘, 𝑇~𝐺𝐸(𝜇, 𝜎, 𝑘), then the PDF 𝑟(𝑡; 𝜇, 𝜎, 𝑘) =

(1/(2𝑘+1𝜎Γ(𝑘 + 1))) exp {−(1/2)|(𝑡 − 𝜇)/𝜎|
1

𝑘}, 𝑡 ∈ (−∞,∞), 𝜇 ∈ ℝ, 𝜎 > 0, 𝑘 > 0, 

and the CDF 𝑅(𝑡) = (1/2) [1 + (sgn(𝑡 − 𝜇)/Γ(𝑘))𝛾 (𝑘, |(𝑡 − 𝜇)/𝜎|
1

𝑘)], where 

𝛾(𝑠, 𝑦) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑦

0
 is the incomplete gamma function.  

 

Note: There are some special cases of the Generalized Error Distribution: 

- If 𝑘 = 1/2 then 𝐺𝐸(𝜇, 𝜎, 1/2)  𝑁(𝜇, 𝜎)=
𝑑  which is the Normal Distribution. 

- If 𝑘 = 1 then 𝐺𝐸(𝜇, 𝜎, 1)  𝐿(𝜇, 2𝜎)=
𝑑  which is the Double Exponential (Laplace 

Distribution). 

- If the limit 𝑘 ⟶ 0, 𝐺𝐸(𝜇, 𝜎, 𝑘 ⟶ 0)  𝑈(𝜇 − 𝜎, 𝜇 + 𝜎)=
𝑑   which is the Uniform 

Distribution. 

 

By substituting in (2.3), the PDF 𝑔(𝑥) of the Generalized Error−𝑋 sub-family is defined 

as 

 𝑔(𝑥) =
𝜋

2𝑘+1𝜈Γ(𝑘 + 1)
csc2(𝜋𝐹(𝑥)) 𝑓(𝑥)𝑒−

1

2
|
1

𝜈
[𝛾−cot(𝜋𝐹(𝑥))]|

1
𝑘

 (3.17) 

 

where 𝛾 = 𝑐/𝑏, 𝑐 = 𝑎 − 𝜇 ∈ ℝ and 𝜈 = 𝜎/𝑏 > 0, by substituting in (2.4), the CDF 𝐺(𝑥) 
of the Generalized Error −𝑋 sub-family is defined as 

 𝐺(𝑥) =
1

2
[1 +

sgn(𝛾 − cot(𝜋𝐹(𝑥)))

Γ(𝑘)
𝛾 (𝑘, |

1

𝜈
[𝛾 − cot(𝜋𝐹(𝑥))]|

1

𝑘

)] (3.18) 

 

where 𝛾(𝑠, 𝑦) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑦

0
 is the lower incomplete gamma function. 
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Lemma 11: Let the random variable 𝑋𝑔 follow thedistributions defined in (3.18), then: 

a) If 𝑘 = 1/2, we get the same Normal−𝑋 sub-family of distributions defined in 

Section 3.1. 

b) If 𝑘 = 1, we get the Double Exponential (Laplace)−𝑋 sub-family of distributions. 

c) If the limit 𝑘 ⟶ 0, we get Uniform Distribution−𝑋 sub-family of distributions. 

 

Lemma 12: Let 0 < 𝜆 < 1, the quantile function of the Generalized Error−𝑋 sub-family 

of distributions defined in (3.18) is given by 

 
𝑄𝑋𝑔(𝜆) = 𝑄𝑋𝑓 (

1

𝜋
cot−1 (𝛾 − 𝜈 sign(2𝜆 − 1) (2𝑄𝑔𝑎𝑚𝑚𝑎(|2𝜆 − 1|, 𝑘))

𝑘

)) 

              = 𝐹−1 {
1

𝜋
cot−1 (𝛾 − 𝜈 sign(2𝜆 − 1) (2𝑄𝑔𝑎𝑚𝑚𝑎(|2𝜆 − 1|, 𝑘))

𝑘

)} 
(3.19) 

 

where 𝑄𝑔𝑎𝑚𝑚𝑎(𝜆) is the quantile function of a gamma distribution, and 𝐹−1(𝜆) =

𝑄𝑋𝑓(𝜆) is the quantile function of the random variable 𝑋𝑓 with CDF 𝐹(𝑥). 

 

Proof: By equation (2.7) in Theorem 1 above, since the quantile of the random variable 

𝑇 with CDF 𝑅(𝑡) is the quantile of the Generalized Error distribution with parameters 

𝜇, 𝜎, and 𝑘, and it is given by 𝑄𝑇(𝜆) = 𝑅
−1(𝜆) = 𝜎 sign(2𝜆 − 1)(2𝑄𝑔𝑎𝑚𝑚𝑎(|2𝜆 −

1|, 𝑘)) 𝑘 + 𝜇, where 𝑄𝑔𝑎𝑚𝑚𝑎(𝜆) is the quantile function of gamma distribution, hence it 

can be easily gotten the result in (3.19). 

 

Lemma 13: The Shannon entropy of the Generalized Error−𝑋 sub-family of 

distributions defined in (3.18), 𝜂𝑋𝑔, is given by 

 

𝜂𝑋𝑔 = log(𝜋) + 𝑘 + (𝑘 + 1) log(2) + log(Γ(𝑘 + 1)) + log(𝛾) 

             +2𝐸 {log (𝐹(𝑋𝑔))} + 2∑𝐶𝑘𝐸 {[𝐹(𝑋𝑔)]
2𝑘
}

∞

𝑘=1

+ 𝐸 {log (𝑞𝑋𝑓(𝑆(𝑇)))} 
(3.20) 

 

where 𝐶𝑘 = (−1)
𝑘(2𝜋)2𝑘𝐵2𝑘/(2𝑘(2𝑘)!) and 𝐵𝑘 is the Bernoulli number, 𝐹(𝑥) is the 

CDF of a random variable 𝑋𝑓, 𝑆(𝑇) = cot−1((𝑎 − 𝑇)/𝑏) /𝜋, Γ(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
∞

0
 is the 

gamma function, and 𝑞𝑋𝑓(𝜆) = 1/𝑓(𝐹
−1(𝜆)) = 1/𝑓(𝑄𝑋𝑓(𝜆)) is the quantile density 

function of 𝑋𝑓. 

 

Proof: Since the random variable 𝑇 has the Generalized Error distribution with 

parameters 𝜇, 𝜎, and, then its Shannon entropy, 𝜂𝑇, is defined as 𝑘 + log(2𝑘+1𝜎Γ(𝑘 +

1)). Now substitute in (2.9) we get the result (3.20). 

 

Lemma 14: Let the random variable 𝑋𝑓with PDF 𝑓(𝑥) and CDF 𝐹(𝑥) has the non-

central 𝑛𝑡ℎ moment 𝐸[𝑋𝑓
𝑛] ≤ 𝐸[|𝑋𝑓|

𝑛
] < ∞, and the random variable 𝑇 Generalized 

Error distribution with parameters 𝜇, 𝜎, and 𝑘, 𝑇~𝐺𝐸(𝜇, 𝜎, 𝑘), then the random variable 

𝑋𝑔with PDF 𝑔(𝑥) and CDF 𝐺(𝑥) defined in (3.18) has the non-central 𝑛𝑡ℎ moment 

𝐸[𝑋𝑔
𝑛] ≤ 𝐸[|𝑋𝑔|

𝑛
] < ∞ and satisfiesthe following 
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 𝐸[|𝑋𝑔|
𝑛
] < {

𝜋𝐸[|𝑋𝑓|
𝑛
]𝑚1(𝑎, 𝑏, 𝜇, 𝜎, 𝑘)        ; if 𝑏 ≥ 𝜇

𝜋𝐸[|𝑋𝑓|
𝑛
]𝑚2(𝑎, 𝑏, 𝜇, 𝜎, 𝑘)        ; if 𝑏 < 𝜇

 (3.21) 

 

where 

𝑚1(𝑎, 𝑏, 𝜇, 𝜎, 𝑘) = 

=
3

4𝑏Γ(𝑘)
{𝜎2𝑘Γ(2𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
) + 𝜇Γ(𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
)} −

3𝑎

2𝑏
+ (

3𝑎

2𝑏
+

4

𝜋
)𝑅(𝑏) −

8

𝜋
 𝑅(−𝑏), 

𝑚2(𝑎, 𝑏, 𝜇, 𝜎, 𝑘) = 

=
3

4𝑏Γ(𝑘)
{𝜎2𝑘𝛾∗ (2𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
) + 𝜇𝛾 (𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
) +

𝜇

2
} −

3𝑎

2𝑏
+ (

3𝑎

2𝑏
+

4

𝜋
)𝑅(𝑏) −

8

𝜋
 𝑅(−𝑏), 

 

Γ(𝑘, 𝑦) = ∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠
∞

𝑦
 is the upper incomplete gamma function and 𝛾∗(𝑘, 𝑦) =

∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠
𝑦

0
 is the lower incomplete gamma function. 

 

Proof: Since 𝑇~𝐺𝐸(𝜇, 𝜎, 𝑘), then 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

=
1

2𝑘+1𝜎Γ(𝑘 + 1)
∫ 𝑡 𝑒−

1

2
|
𝑡−𝜇

𝜎
|

1
𝑘

𝑑𝑡

∞

𝑏

. 

Here, there are two cases: 

 

Case 1: If 𝑏 ≥ 𝜇: 

 

Let 𝑦 =
1

2
(
𝑡−𝜇

𝜎
)

1

𝑘
⟹ 𝜎2𝑘𝑦𝑘 + 𝜇 = 𝑡 ⟹ 𝑑𝑡 = 𝑘𝜎2𝑘𝑦𝑘−1𝑑𝑦, then 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

=
1

2𝑘+1𝜎Γ(𝑘 + 1)
∫ 𝑡𝑒−

1

2
(
𝑡−𝜇

𝜎
)

1
𝑘

𝑑𝑡

∞

𝑏

=
1

2Γ(𝑘)
∫ (𝜎2𝑘𝑦𝑘 + 𝜇)𝑒−𝑦𝑦𝑘−1𝑑𝑦.

∞

1

2
(
𝑏−𝜇

𝜎
)

1
𝑘

 

                     =
𝜎2𝑘−1

Γ(𝑘)
∫ 𝑦2𝑘−1𝑒−𝑦𝑑𝑦

∞

1

2
(
𝑏−𝜇

𝜎
)

1
𝑘

+
𝜇

2Γ(𝑘)
∫ 𝑦𝑘−1𝑒−𝑦𝑑𝑦.

∞

1

2
(
𝑏−𝜇

𝜎
)

1
𝑘

 

                    =
𝜎2𝑘−1

Γ(𝑘)
Γ(2𝑘,

1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

) +
𝜇

2Γ(𝑘)
Γ(𝑘,

1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

) 

 

where Γ(𝑘, 𝑦) = ∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠
∞

𝑦
 is the upper incomplete gamma function. Hence, 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

=
1

2Γ(𝑘)
[𝜎2𝑘Γ(2𝑘,

1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

) + 𝜇Γ(𝑘,
1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

)] < ∞. 
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Case 2: If 𝑏 < 𝜇: 

 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

= ∫ 𝑡𝑟(𝑡)𝑑𝑡

𝜇

𝑏

+ ∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝜇

= ∫ 𝑡𝑟(𝑡)𝑑𝑡

𝜇

𝑏

+
𝜇

2
. 

Let 𝑦 =
1

2
(
𝜇−𝑡

𝜎
)

1

𝑘
⟹ 𝜇 − 𝜎2𝑘𝑦𝑘 = 𝑡 ⟹ 𝑑𝑡 = −𝑘𝜎2𝑘𝑦𝑘−1𝑑𝑦, then 

∫ 𝑡𝑟(𝑡)𝑑𝑡

𝜇

𝑏

=
1

2𝑘+1𝜎Γ(𝑘 + 1)
∫ 𝑡𝑒−

1

2
(
𝜇−𝑡

𝜎
)

1
𝑘

𝑑𝑡

𝜇

𝑏

=
1

2Γ(𝑘)
∫ (𝜇 − 𝜎2𝑘𝑦𝑘)𝑦𝑘−1𝑒−𝑦𝑑𝑦.

1

2
(
𝜇−𝑏

𝜎
)

1
𝑘

0

 

                    =
𝜎2𝑘−1

Γ(𝑘)
∫ 𝑦2𝑘−1𝑒−𝑦𝑑𝑦

1

2
(
𝜇−𝑏

𝜎
)

1
𝑘

0

+
𝜇

2Γ(𝑘)
∫ 𝑦𝑘−1𝑒−𝑦𝑑𝑦

1

2
(
𝜇−𝑏

𝜎
)

1
𝑘

0

. 

                    =
𝜎2𝑘−1

Γ(𝑘)
𝛾 (2𝑘,

1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

) +
𝜇

2Γ(𝑘)
𝛾∗ (𝑘,

1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

). 

 

where 𝛾∗(𝑘, 𝑦) = ∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠
𝑦

0
 is the lower incomplete gamma function.  

 

Hence, 

∫ 𝑡𝑟(𝑡)𝑑𝑡

∞

𝑏

=
1

2Γ(𝑘)
[𝜎2𝑘𝛾∗ (2𝑘,

1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

) + 𝜇𝛾∗ (𝑘,
1

2
(
𝑏 − 𝜇

𝜎
)

1

𝑘

)] +
𝜇

2
< ∞. 

 

Now, by substituting in (2.13), we obtain the result in (3.21), where 𝛾∗(𝑘, 𝑦) and Γ(𝑘, 𝑦) 
are bounded functions Alzer (1997). 

 

One example on this family, let the random variable 𝑋𝑓 follow Generalized Hyperbolic 

Secant distribution with location parameter −∞ < 𝛼 < ∞ and scale parameter 𝛽 > 0 as 

in Sections 3.1 and 3.2. From (3.17) we get 

 𝐺𝐸𝐺𝐻𝑆(𝑥; 𝜽) =
𝜋

2𝑘+2𝛽𝜈Γ(𝑘 + 1)
cosh [

𝜋

2
(
𝑥 − 𝛼

𝛽
)] 𝑒

−
1

2
|
1

𝜈
(𝛾+sinh[

𝜋

2
(
𝑥−𝛼

𝛽
)])|

1
𝑘

 (3.22) 

 

where 𝑥 ∈ ℝ, 𝛼, 𝛾 ∈ ℝ and 𝑘, 𝛽, 𝜈 > 0, and 𝜽 = (𝛾, 𝜈, 𝑘, 𝛼, 𝛽)′. The CDF of 𝐺𝐸𝐺𝐻𝑆is 

given by 𝐺(𝑥; 𝜽) = 𝐺(𝑥) = (1/2) [1 + (sgn(𝛾 + sinh[(𝜋/2)((𝑥 − 𝛼)/𝛽)])/

Γ(𝑘)) 𝛾 (𝑘, |[𝛾 + sinh[(𝜋/2)((𝑥 − 𝛼)/𝛽)]]/𝜈|
1/𝑘
)], The random variable 𝑋𝑔 with PDF 

in (3.22) is said to be follow a five-parameter Generalized Error-Generalized Hyperbolic 

Secant distribution (𝐺𝐸𝐺𝐻𝑆). 

 

Plots in Figure 3 show the 𝐺𝐸𝐺𝐻𝑆 density function for different parameter values, the 

distribution can be symmetric, right skewed, left skewed, unimodal, bimodal or trimodal. 
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Figure 3 The PDF of Generalized Error-Generalized Hyperbolic Secant distribution for various 

values of 𝛾, 𝜈, and 𝑘. 
 

 

 
Lemma 15: Let the random variable 𝑋𝑔 has 𝐺𝐸𝐺𝐻𝑆 distribution, then the non-central 

𝑛𝑡ℎ moment 𝐸[𝑋𝑔
𝑛] exists and satisfies the following inequality 

 

 𝐸[|𝑋𝑔|
𝑛
] <

{
 
 

 
 𝜋 (∑(

𝑛

𝑖
) 𝛽𝑖𝛼𝑛−𝑖|𝐸𝑖|

𝑛

𝑖=0

) 𝑚1(𝑎, 𝑏, 𝜇, 𝜎, 𝑘)           ; if  𝑏 ≥ 𝜇.

𝜋 (∑(
𝑛

𝑖
) 𝛽𝑖𝛼𝑛−𝑖|𝐸𝑖|

𝑛

𝑖=0

) 𝑚2(𝑎, 𝑏, 𝜇, 𝜎, 𝑘)           ; if  𝑏 < 𝜇,

 (3.23) 
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where 𝐸𝑖
′𝑠 are the Euler numbers,  

𝑚1(𝑎, 𝑏, 𝜇, 𝜎, 𝑘) = 

=
3

4𝑏Γ(𝑘)
{𝜎2𝑘Γ(2𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
) + 𝜇Γ(𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
)} −

3𝑎

2𝑏
+ (

3𝑎

2𝑏
+

4

𝜋
)𝑅(𝑏) −

8

𝜋
 𝑅(−𝑏), 

𝑚2(𝑎, 𝑏, 𝜇, 𝜎, 𝑘) = 

=
3

4𝑏Γ(𝑘)
{𝜎2𝑘𝛾 (2𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
) + 𝜇𝛾∗ (𝑘,

1

2
(
𝑏−𝜇

𝜎
)

1

𝑘
) +

𝜇

2
} −

3𝑎

2𝑏
+ (

3𝑎

2𝑏
+

4

𝜋
)𝑅(𝑏) −

8

𝜋
 𝑅(−𝑏), 

Γ(𝑘, 𝑦) = ∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠
∞

𝑦
 is the upper incomplete gamma function and 𝛾∗(𝑘, 𝑦) =

∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠
𝑦

0
 is the lower incomplete gamma function. 

 

Proof: By using the same steps used in proving Lemma 6 above, and by substituting in 

(3.21), we obtain the result in (3.23). 

 

Lemma 16: Let 0 < 𝜆 < 1, the quantile function of the 𝐺𝐸𝐺𝐻𝑆 distribution defined in 

(3.22) is given by 

 𝑄𝐺𝐸𝐺𝐻𝑆(𝜆) = 𝛼 −
2𝛽

𝜋
sinh−1 {𝛾 − 𝜈 sign(2𝜆− 1) (2𝑄𝑔𝑎𝑚𝑚𝑎(|2𝜆− 1|, 𝑘))

𝑘

} (3.24) 

 

Proof: By equation (3.19) in Lemma 12 above, since the quantile of the random variable 

𝑋𝑓 with CDF 𝐹(𝑥) is the quantile of the Generalized Hyperbolic Secant with parameters 

𝛼 and 𝛽, and it is given by 𝐹−1(𝜆; 𝛼, 𝛽) = 𝑄𝑋𝑓(𝜆; 𝛼, 𝛽) = (𝜋/2)𝛽 sinh
−1{tan[𝜋(𝜆 −

1/2)]} + 𝛼. 

 

Since tan−1(𝑦) = cot−1(−𝑦) − 𝜋/2and sinh−1(−𝑦) = − sinh−1(𝑦), the result in (3.24) 

follows. 

4. Applications 

We now consider two real numeric examples in order to demonstrate the usefulness of 

the 𝐺𝐺𝐻𝑆 distribution defined in (3.14) and the 𝐺𝐸𝐺𝐻𝑆 distribution defined in (3.22) in 

fitting data sets. 

4.1 The famous old faithful Geyser eruption data 

The famous Old Faithful Geyser eruption data (𝑛 = 272) obtained from Härdle (1991, p. 

201), this data is the duration time of eruption (in minutes) taken during August 1𝑠𝑡 to 

August 15𝑡ℎ, 1985 (Dekking et al., 2005), and it is available in faithful data within 

MASS package in 𝑅 3.3.3 programming language (Venables and Ripley, 2002). Figure 3 

shows the Old Faithful Geyser eruption data histogram; it can be shown this data has two 

distinct modes (bimodal). 

 

A common approach for fitting such a bimodal data is by using mixture distributions 

(Aljarrah et al., 2014). Arellano-Valle et al. (2010) used epsilon-skew-normal distribution 

to fit this data, they have gotten the same fitting results comparing with the mixture-
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normal distribution fitting results. The four-parameter 𝐺𝐺𝐻𝑆 distribution defined in (3.1), 

the Mixture-Normal (𝑀𝑁) distribution, the five-parameter Normal-Weibull (𝑁𝑊{𝐶}) 
distribution was defined by Aljarrah et al. (2014), and Beta-Normal (𝐵𝑁) distribution 

was defined by Eugene et al. (2002), are applied to fit the data using 𝑀𝐿𝐸 procedure. 

 

To compare the models, Table 2 shows the 𝑀𝐿𝐸 estimates and their standard errors, log-

likelihood values, 𝐴𝐼𝐶 (Akaike Information Criterion), 𝐶𝐴𝐼𝐶 (Consistent Akaike 

Information Criterion), 𝑊 (Durbin-Watson) test statistic, 𝐴 (Anderson-Darling) test 

statistic, and 𝐾-𝑆 (Kolmogorov-Smirnov) test statistic with its corresponding 𝑝-value. In 

general, the smallest the values of: log-likelihood, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊, 𝐴, and 𝐾-𝑆, and the 

largest the value of the 𝐾-𝑆 corresponding 𝑝-value, gives the best the fit to the data. 

 

The results in Table 2 indicate that the four-parameter 𝐺𝐺𝐻𝑆 distribution outperforms 

the three distributions: 𝑀𝑁, five-parameter 𝑁𝑊{𝐶}, and 𝐵𝑁 distributions, and gives the 

best fit based on the all six measures: log-likelihood, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊, 𝐴, and 𝐾-𝑆 statistic 

with its corresponding 𝑝-value. 

 

Plots of the probability density functions: 𝐺𝐺𝐻𝑆, 𝑀𝑁, five-parameter 𝑁𝑊{𝐶}, and 𝐵𝑁 

with 𝑀𝐿 estimate parameters versus the data, shown in Figure 4. 

The 𝐺𝐺𝐻𝑆 distribution can fit well wide variety of distribution shapes, including bimodal 

data such as Old Faithful Geyser eruption data. 

Table 2: Parameter estimates (standard errors of the MLE in parentheses) and 

goodness-of-fit statistics for the famous Old Faithful Eruption data 

 

Gumbel Generalized 

Hyperbolic Secant 

(GGHS) 

Five-parameter Normal 

Weibull {Cauchy}  

(NW{C}) 

Mixture-Normal 𝒂 

(MN) 

 

Beta-Normal 

(BN) 

 

𝑀𝐿𝐸 (𝑆𝐸) �̂� =   0.958 (  1.409) �̂� = 5.155 (0.645) �̂�1 = 4.273 (0.034) �̂� = 0.008 (0.002) 

 �̂� = 17.620 (  3.706) �̂� = 2.032 (0.150) �̂�1 = 0.437 (0.027) �̂� = 0.007 (0.002) 

 �̂� =   3.119 (  0.022) �̂� = 1.885 (0.116) �̂�2 = 2.019 (0.026) �̂� = 3.219 (0.055) 

 �̂� =   0.569 (  0.030) �̂� = 1.883 (0.446) �̂�2 = 0.236 (0.023) �̂� = 0.071 (0.009) 

 ---- �̂� = 1.342 (0.060) �̂� =  0.652 (0.029) ---- 

Log-likelihood −265.971 −270.007 −276.360 −352.061 

𝐴𝐼𝐶 539.941 550.015 562.720 712.122 

𝐶𝐴𝐼𝐶 540.091 550.240 562.946 712.271 

𝑊 0.079 0.110 0.175 7.681 

𝐴 0.564 0.680 1.349 45.418 

𝐾-𝑆 statistic 0.040 0.046 0.049 0.566 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 0.773 0.610 0.540 0 

 𝑎Mixture normal is defined as𝑝 𝑁(𝜇1, 𝜎1) + (1 − 𝑝) 𝑁(𝜇2, 𝜎2). 
 
 

4.2 Australian athletes’ data 

Cook and Weisberg (1994) proposed the Australian athletes’ data, this data contains 13 

variables on 102 male and 100 female Australian athletes collected at the Australian 

Institute of Sport. This data is available in ais data within DAAG package in 𝑅 3.3.3 

programming language (John and W. John, 2015). 
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Figure 4   The PDFs for the famous Old Faithful Geyser eruption data. 

 
There were some applications on this data, including: 

1) Application on the generalized skew two-piece skew-normal distribution with the 

heights for the 100 female athletes and the hemoglobin concentration levels for the 202 

athletes was applied by Jamalizadeh et al. (2011). 

2) Application on the extended skew generalized normal distribution with 202 percentage 

of the hemoglobin blood cell for the male athletes was applied by Choudhury and Abdul 

Matin (2011). 

3) Applications on the Gumbel-Weibull (𝐺𝑊) distribution with two variables in this data: 

the sum of skin folds (𝑆𝑆𝐹) and the height in centimeters for the 100 female athletes were 

applied by Al-Aqtash et al. (2014). Additionally, the height in centimeters for the 100 

Australian female athlete’s data is unimodal and left skewed (skewness = −0.560, 

kurtosis = 4.197). 

Al-Aqtash et al. (2014) have compared their new 𝐺𝑊 distribution 𝑀𝐿𝐸 fits with the 𝑀𝐿 

fits of the following distributions: the 𝐵𝑁 distribution, the Weibull-Pareto (𝑊𝑃) 

distribution defined by Alzaatreh et al. (2013), and the Exponentiated-Weibull (𝐸𝑊) 

distribution defined by Mudholkar and Srivastava (1993). They were found the 𝐺𝑊 

distribution provides the best 𝑀𝐿𝐸 fit comparing with the other compared distributions. 

The five-parameter 𝐺𝐸𝐺𝐻𝑆 distribution defined in (3.14), the 𝐺𝑊 distribution, the 𝐸𝑊 

distribution, and 𝐵𝑁 distribution are applied to fit the data using 𝑀𝐿𝐸 procedure. 

To compare the models, Table 3 shows the 𝑀𝐿𝐸 estimates and their standard errors, log-

likelihood values, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊 test statistic, 𝐴 test statistic, and 𝐾-𝑆 test statistic with 

its corresponding 𝑝-value. 

The results in Table 3 indicate that the five-parameter 𝐺𝐸𝐺𝐻𝑆 distribution outperforms 

the three distributions: 𝐺𝑊, 𝐸𝑊, and 𝐵𝑁 distributions, and gives the best fit based on the 

all six measures: log-likelihood, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊, 𝐴, and 𝐾-𝑆 statistic with its 

corresponding 𝑝-value.  

 

Plots of the probability density functions: 𝐺𝐸𝐺𝐻𝑆 distribution, 𝐺𝑊 distribution, 𝐸𝑊 

distribution, and 𝐵𝑁 distribution with 𝑀𝐿𝐸 estimate parameters versus the data, shown in 

Figure 5. The 𝐺𝐸𝐺𝐻𝑆 distribution can fit well wide variety of distribution shapes, 

including left skewed unimodal data such as the Australian athletes’ data. 
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Table 3: Parameter estimates (standard errors of the MLE in parentheses) and 

goodness-of-fit statistics for the heights data 

 

General Error-Generalized 

Hyperbolic Secant 

(GEGHS) 

Gumbel-Weibull  

(GW) 

 

Exponentiated-Weibull 

(EW) 

 

Beta-Normal 

(BN) 

 

𝑀𝐿𝐸 (𝑆𝐸) �̂� =    −0.514 (0.017) �̂� =   12.268 (   2.153) �̂� =    14.741 (3.236) �̂� =     0.982 (   1.371) 

 �̂� =       0.222 (0.076) �̂� = 147.018 (12.582) 𝜃 =       2.784 (1.339) �̂� =     8.391 (25.138) 

 �̂� =      0.879 (0.160) �̂� =     7.177 (    6.109) �̂� = 170.264 (4.546) �̂� = 194.059 (29.049) 

 �̂� = 164.863 (0.168) �̂� =     3.933 (    2.959) ---- �̂� =   13.328 (14.349) 

 �̂� =    32.235 (0.375) ---- ---- ---- 

Log-likelihood −347.971 −349.330 −350.369 −350.30 

𝐴𝐼𝐶 705.941 706.659 706.739 708.60 

𝐶𝐴𝐼𝐶 706.580 707.081 706.989 709.02 

𝑊 0.030 0.060 0.094 0.093 
𝐴 0.185 0.383 0.592 0.584 

𝐾-𝑆 statistic 0.048 0.057 0.071 0.072 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 0.977 0.907 0.692 0.676 

 
Figure 5 The PDFs for the heights data. 

 

5. Summary and Conclusion 

In this paper, we have proposed a method for generating a new family of univariate 

continuous distributions using the tangent function 𝑊(𝐹(𝑥)) = 𝑎 + 𝑏 tan(𝜋(𝐹(𝑥) −

1/2)) of the CDF 𝐹(𝑥). In Table 1 we have presented a list of some examples of the 𝑇 −

𝑋 family of distributions based on the tangent function derived from different 𝑇 

distributions with support (−∞,∞). 
 

Two new distributions in the family: four-parameter Gumbel-Generalized hyperbolic 

secant distribution (𝐺𝐺𝐻𝑆) and five-parameter Generalized Error-Generalized hyperbolic 

secant distribution (𝐺𝐸𝐺𝐻𝑆) are defined and some of their properties are given and 

discussed: quantiles, Shannon entropy, and existence of the 𝑛𝑡ℎ raw moment with its 
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upper bound. The shapes of these distributions were found: skewed right, skewed left, or 

symmetric, and unimodal, bimodal, or trimodal. 

 

To illustrate and assess the flexibility of the distributions, the 𝑀𝐿𝐸𝑠 of the 𝐺𝐺𝐻𝑆 

distribution for the Old Faithful Geyser eruption data is computed, this data is bimodal 

data, and it was fitted by using: Mixture-Normal distribution, five-parameter 𝑁𝑊{𝐶} 
distribution, and 𝐵𝑁 distribution (Aljarrah et al., 2014). Furthermore, the 𝐺𝐸𝐺𝐻𝑆 

distribution has been used to fitted the Australian athletes’ data, whereas this data set is 

unimodal and left skewed and it was fitted by using: 𝐺𝑊 distribution, 𝐸𝑊 distribution, 

and 𝐵𝑁 distribution (Al-Aqtash et al., 2014). The 𝐺𝐺𝐻𝑆 and 𝐺𝐸𝐺𝐻𝑆 distributions have 

been found a very flexible and capable of fitting these data sets with the highest Log-

likelihood value and the smallest 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊, 𝐴, and 𝐾-𝑆 values among the four 

distributions. 
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