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Abstract 

The generalized exponential (GE) distribution proposed by Gupta and Kundu (1999) is an 
important lifetime distribution in survival analysis. In this article, we propose to obtain Bayes 
estimators and its associated risk based on a class of non-informative prior under the assumption 
of three loss functions, namely, quadratic loss function (QLF), squared log-error loss function 
(SLELF) and general entropy loss function (GELF). The motivation is to explore the most 
appropriate loss function among these three loss functions. The performances of the estimators 
are, therefore, compared on the basis of their risks obtained under QLF, SLELF and GELF 
separately. The relative efficiency of the estimators is also obtained. Finally, Monte Carlo 
simulations are performed to compare the performances of the Bayes estimates under different 
situations. 

Keywords: Bayes estimator, prior distribution, loss functions, root mean square 
error (rmse), efficiency. 

1.   Introduction 

Let X1, X2, X3,  . . . , Xn be i.i.d. Generalized Exponential random variables, with 
the shape parameter θ  and scale parameter 1, the cumulative distribution 
function becomes 

( ; ) (1 ) ; 0, 0xF x e xθθ θ−= − > >       (1.1) 

with the corresponding probability density function (PDF) given by 

1( ; ) (1 ) ; 0, 0x xf x e e xθθ θ θ− − −= − > > .     (1.2) 

where θ  is a shape parameter. When θ =1, the GE distribution reduces to the 
standard exponential distribution. The GE distribution has a unique mode and its 

median is
1

-ln(1-(0.5)  )θ . 

 
In recent years, an impressive array of papers has been devoted to study the 

behavioral patterns of the parameters of the generalized exponential distribution 
using both classical and Bayesian framework, and a very good summary of this 

work can be found in Gupta and Kundu (1999, 2001a, 2001b), Raqab (2002), 

Raqab and Ahsanullah (2001), Zheng (2002), Singh et al. (2008) and the 

references cited there for some recent developments on GE distribution. 
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The rest of the paper is organized as follows. In section 2, we discussed about 

prior and posterior distribution used in our Bayesian estimation. In section 3, we 

discussed about loss functions. In section 4, we develop Bayes estimators under 

quadratic loss (QLF), squared log error loss (SLELF) and general entropy loss 

functions (GELF) for the shape parameter θ of the Generalized Exponential 

distribution. Section 5, presents the risk of the Bayes estimators under different 

loss functions. In Section 6, the efficiency of the estimators is obtained. 

Numerical experiments are performed and their results are presented in section 

7. Finally, the relative efficiency of the estimators is also shown in figures 1- 4 for 

different values of the parameter. 

2.   Prior and Posterior Distributions 

The Bayesian deduction requires appropriate choice of priors for the parameters.  

Arnold & Press (1983) pointed out that, from a strict Bayesian viewpoint, there is 

clearly no way in which one can say that one prior is better than any other. 

Presumably one has one’s own subjective prior and must live with all of its lumps 

and bumps. But if we have enough information about the parameter(s) then it is 

better to make use of the informative prior(s) which may certainly be preferred 

over all other choices. Otherwise it may be suitable to resort to use non-

informative or vague priors (see Uppadhyay et al. (2001), Singpurwalla (2006)). 

In this paper, we consider that the parameter θ has the non-informative prior 

distribution and is given by 

1
( ) ; , 0

c
g cθ α θ

θ
>        (2.1) 

It is assumed that 1 2 3( , , ,. . . , )nx x x x x=  is a random sample from the Generalized 

Exponential distribution. The likelihood function of θ for the given sample 

observation is, 
n

- x i nn -xi= 1 θ -1iL ( θ | x )= θ e (1 -e )
i= 1

∑

∏      (2.2) 

Here, maximum likelihood estimator of θ  is
n

T
, with 1ln (1 )

1

n x
iT e

i

− −= −∑
=

. 

Combining the prior distribution (2.1) and the likelihood function (2.2), the 

posterior density of θ  is derived as: 

( )
( )

- -( - 1)- -1 -1{ ln(1- ) } - ln(1- )
1 1

| ; , 0 ( 2.3)
- 1

n nx xn cn c i ie e
i i

x e x
n c

θ θ

π θ θ

+
∑ ∑
= =

= >
Γ +  



Bayesian Estimation of the Shape Parameter of the Generalised Exponential Distribution under …..  

Pak.j.stat.oper.res.  Vol.VI  No.2 2010   pp163-174 165

which is a gamma distribution with parameters (n – c + 1) and 

1ln (1 )
1

n x
ie

i

− −−∑
=

 and the mean of the distribution is 

( 1)

1ln (1 )
1

n c

n x
ie

i

− +

− −−∑
=

,  i.e. ).)1(In),1((~ 1

1

−

=

−∑ −+− iecnG
n

i

xθ  

3.   Loss Functions 

From a decision-theoretic view point, in order to select the ‘best’ estimator, a loss 
function must be specified and is used to represent a penalty associated with 

each of the possible estimates. Since, there is no specific analytical procedure 
that allows us to identify the appropriate loss function to be used, customarily, in 

most cases for convenience, researchers use the squared error loss function 

which is symmetrical, and associates equal importance to the losses due to 

overestimation and underestimation of equal magnitude and obtain the posterior 
mean as the Bayesian estimate. No doubt, the use of squared error loss function 

is well justified when the loss is symmetric in nature. Its use is also very popular, 
perhaps, because of its mathematical simplicity. However, for some estimation 

and prediction problems, the real loss function is often not symmetric. 

Asymmetric loss functions have been shown to be functional, see Varian (1975), 

Zellner (1986). Moorhead and Wu (1998), Spiring and Yeung (1998), Chandra 
(2001), etc. 
 

Nonetheless, it has been observed that in certain situations when one loss is the 

true loss function, Bayes estimate under another loss function performs better 

than the Bayes estimate under the true loss. This serves as a warning to naïve 
Bayesians who thought that Bayes methods always performs well regardless of 

situations (see. Ren, et al (2004)). Therefore, we consider symmetric as well as 
asymmetric loss functions for getting better understanding in our Bayesian 

analysis.  

4.   Bayes Estimation 

In this section we provide the Bayes estimates of the shape parameter θ based 
on three loss functions. 

4.1. Bayes’ estimator under quadratic loss function (QLF) 

In this section we consider the Quadratic Loss Function (QLF) 1

- 2( , ) ( )L
θ δ

θ δ
θ

= , 

where δ is a decision rule to estimateθ . δ is to be chosen such that   

    θθπ
θ

δθ
dx∫

∞








 −

0

2

)/(  
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    ( ) θθδθ dxq∫
∞

−=
0

2
)/( , with )/(.

1
)/(

2
xxq θπ

θ
θ =  

is minimum. Here )/( xEq θδ = . 
 

 

The Bayes estimator for parameter θ of the Generalised Exponential distribution 

under quadratic loss function may be defined as  

( )

( )

0

2

0

1
|

ˆ
1

|
bq

x d

x d

π θ θ
θ

θ

π θ θ
θ

∞

∞
=

∫

∫
 

     
1n c

T

− +
=          (4.1) 

Where, 1ln (1 )
1

n x
iT e

i

− −= −∑
=

 

4.2. Bayes estimator under squared-log error loss function (SLELF) 

The squared-log error loss function is of the form: 

( ) ( )
2

2 1
2 1 1, ln ln lnL

δ
θ δ δ θ

θ

 
= − =  

 
 

which is balanced with lim 2 1 1( , ) 0 .L as orθ δ δ→ ∞ → ∞  A balanced loss function 

takes both error of estimation and goodness of fit into account but the 
unbalanced loss function only considers error of estimation. This loss function is 

convex for 1 e
δ

θ
≤ and concave otherwise, but its risk function has a unique 

minimum with respect to 1δ . 

 

The Bayes’ estimator for the parameter θ of Generalised Exponential distribution 

under the squared-log error loss function may be given as 

[ ]ˆ exp (ln | )bsl E xθ θ=  

where E(.) denotes the posterior expectation. After simplification, we have 

( )11ˆ n c

bsl e
T

ψθ − +
=         (4.2) 

where,  ( )
( )
( )

1
1

1

n c
n c

n c
ψ

′Γ − +
− + =

Γ − +
  is the digamma function. 
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4.3.   Bayes estimator under general entropy loss function (GELF) 

Calabria and Pulcini (1996) proposed a loss function which is a suitable 
alternative to the Modified LINEX loss function called a General Entropy Loss 
Function of the form: 

2 2
3 2( , ) [( ) ln( ) 1] ; 0; 0pL p p

δ δ
θ δ ω ω

θ θ
= − − > ≠          

whose minimum occurs at 2δ θ= . Without loss of generality, we assume that 

ω =1. 
 

Following Calabria and Pulcini (1996), the Bayes estimator for parameter θ for 
the pdf (1.2) under general entropy loss may be defined as 

1

ˆ [ ( )]bge

p p
Eθ θ

−
−

=  

provided that ( )pE θ − exists and is finite. 

After simplification, we have 

( )
1

ˆ p p
bge

K
E

T
θθ θ

−
− = =  , where 

( )
( )

1

1
.

1

pn c
K

n c p

 Γ − +
=  

Γ − − + 
    (4.3) 

5.   Risks of the Bayes Estimators 

The risk of ˆ
bqθ  under Quadratic loss is  

( ) ( ) ( ) ( )
22

2 2

1 1 1ˆ ˆ , 2 3 4 3 4bq bqR E L n E n E
T T

θ θ δ θ θ
θ

     = = − − + −          
 

 
Since X is a Generalised Exponential variate with parameterθ , then 

1ln(1 )
1

n xiT e
i

− −= −∑
=

is distributed as ( ),G n θ . Therefore, the probability density 

function of T is given by 

( )
( )

( )
1 ; , 0.

n

t n
Tg t e t t

n
θθ

θ− −= ≥
Γ

 

Therefore,  

 ( ) ( )
( )

( )
( )

( )1

0 0

( ) .

n

n t n
E T t g t dt t e dt

n n

γγ γ γ θθ γ
θ

∞ ∞
− − − − − Γ −

= = =
Γ Γ∫ ∫  

 
Using the above results, we obtain, 

( ) ( )
( )

( )
( )( )

2
22

2

1ˆ 2 1 1
1 1 2

bqR n c n c
n n n

θ θ
θ θ θ

θ

 
= − − − + − − 

− − − 
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22 ( 1 ) ( 1 )
[1 ]

1 ( 1 )( 2 )

n c n c

n n n

− − − −
= − +

− − − .    (5.1) 

 

Following the same procedure, the risk of ˆ
bslθ  under Squared-log error loss is  

( ) ( ) 2 2
1

ˆ ˆ , ( 1) 2 ( ) ( 1) ( ) ( )bsl bslR E L n c n n c n nθ θ δ ψ ψ ψ ψ ψ  ′= = − + − − + + +
 

  (5.2) 

 

Where,  
( )

( )
( )

n
n

n
ψ

′Γ
=

Γ
 and 1

0

( ) ln y nn y e y dy
∞

− −′Γ = ∫  is the first derivative of 

( )nΓ with respect to n. 

and  
2

2
( ) {log ( )}

d
n n

dn
ψ ′ = Γ is the tri-gamma function (see Sinha(1986)). 

and the risk of ˆ
bgeθ  under general entropy loss is  

( ) ( )2

( 1) ( ) ( )ˆ ˆ , [ ln 1]
( 1) ( ) ( )

bge bge

n c n p n
R E L p k p

n c p n n
θ θ δ ω

′Γ − + Γ − Γ = = − + −
  Γ − − + Γ Γ

  (5.3) 

 
Note that the above three risk functions are constant with respect to θ  as n  is 
known and independent ofθ . Using the Lehmann’s Theorem (1983) [Theorem 
2.1 and Corollary 2.1 in section 2 of Chapter 4, pp 249-250], if a Bayes’ 
estimatorδ has constant risk, then it is minimax, it follows that 

22( 1) ( 1)ˆ( ) [1 ]
1 ( 1)( 2)

bq

n c n c
R

n n n
θ

− − − −
== − +

− − −
, 

( ) 2 2ˆ ( 1) 2 ( ) ( 1) ( ) ( )bslR n c n n c n nθ ψ ψ ψ ψ ψ′= − + − − + + +  

and  ( ) ( 1) ( ) ( )ˆ [ ln 1]
( 1) ( ) ( )

bge

n c n p n
R p k p

n c p n n
θ ω

′Γ − + Γ − Γ
= − + −

Γ − − + Γ Γ
 

are all minimax estimator for the parameterθ  of Generalized Exponential 
distribution under the above mentioned  loss functions. 

6.   Efficiency of the Estimators 

In this section, we calculate the relative efficiency of the estimators 
ˆ
mleθ , ˆ

bqθ , ˆ
bslθ , ˆ

bgeθ . where,  

11[( ln(1 ) )] ( )
11

n x
iE e E

T ni

θ− −− = =∑
−=

 

and  
2

2

1
( )

( 1)( 2)
E

T n n

θ
=

− −
 

then,  
2

2

1
( )

( 1) ( 2)
Var

T n n

θ
=

− −
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Also, we have, 

1ˆ
bq

n c

T
θ

− −
=   and  

2 2

2

( 1)ˆ( )
( 1) ( 2)

bq

n c
Var

n n

θ
θ

− −
=

− −
 

 

The MLE of θ  is  

ˆ
mle

n

T
θ =    and    

2 2

2
ˆ( )

( 1) ( 2)
mle

n
Var

n n

θ
θ =

− −
 

and  

( )11ˆ
bsl

n c
e

T

ψ
θ

− +
=    and  

2

2

2 ( 1)ˆ( )
( 1) ( 2)

bsl

n c
Var e

n n

θ ψ
θ

− +
=

− −
 

and  

ˆ
bge

K

T
θ =  , where, 

( )
( )

1

1
.

1

pn c
K

n c p

 Γ − +
=  

Γ − − + 
and   

2

2

2

( 1)ˆ( ) ( )
( 1) ( 2) ( 1)

bge

n c p
Var

n n n c p

θ
θ

Γ − +
=

− − Γ − − +
 

Therefore the efficiency of ˆ
bqθ with respect to ˆ

mleθ of θ  is  

    
2

1 2

ˆ( )
1

ˆ ( 1)( )
mle

bq

Var n
E

n cVar

θ

θ
= = >

− −
, (for n > 1, 1c ≥  and ( 1)n c> + ), see figure 1) 

 

Therefore the efficiency of ˆ
bgeθ with respect to ˆ

bqθ of θ  is  

   
2

2
2

ˆ( ) ( 1)
[ ] ( 1) 1

ˆ ( 1)( )

bq p

bge

Var n c p
E n c

n cVar

θ

θ

Γ − − +
= = − − >

Γ − +
, (for n > p and p ≥3, see figure 2) 

 

Efficiency of  ˆ
bslθ  with respect to ˆ

bqθ  of θ  is 

   
2

3 2 ( 1)

ˆ( ) ( 1)
ˆ( )

bq

n c

bsl

Var n c
E

eVar

θ

θ
Ψ − +

− −
= =   

 

Efficiency of  ˆ
bslθ  with respect to ˆ

bgeθ  of θ  is 
2

4 2 ( 1 )

( 1)
( )ˆ( ) ( 1)

ˆ( )

p

b g e

n c

b s l

n c
V a r n c p

E
eV a r

θ

θ
Ψ − +

Γ − +

Γ − − +
= =  
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7.   Numerical Results and Discussion  

The simulation study considers the performance of Bayes estimation of θ  using 

the prior (2.1) under three different loss functions. The behavior of the loss 

functions is evaluated on the basis of risk estimates. A comparison in terms of 

risk values is needed to check whether an estimator is inadmissible under some 

loss functions. Risks of all these estimators with respect to these three losses 

have been computed and are presented in Tables 1 and 2. The results of the 

simulation study are summarized in the Tables 1-2. We simulate samples from 

(1.2) with the true value of θ  = 0.5 and 1, using three different sample sizes  

( n  = 20, 50, 100). All results are based on 10000 repetitions. In the Tables, the 

estimators for the parameter and the risk, is averaged over the total number of 

repetitions. Root mean square error (rmse) of each estimate is presented within 

parenthesis. Tables 1-2 show that under GELF, risk of ˆ
bgeθ  based on  

non-informative prior is minimum and hence it is admissible for all n , c  and p . It 

is also clear from the tables 1 and 2 that, each of the three Bayes’ estimators has 

smaller rmse than the classical estimator (i.e., mle) except for the value of c =1, 

when both ˆ
mleθ and ˆ

bqθ are equal. It is interesting to note that  ˆ
bgeθ  with c =1,  

p = -1 have smallest risk among all Bayes estimators and the risk of  ˆ
bqθ  with  

c = 2, p = 1 is found to be largest. Further, we note that, the risk of the 

estimators of θ  decreases as n increases. 
 

Finally, from the results, we conclude that in situations involving estimation of 

parameter θ  of Generalized Exponential distribution, general entropy loss 

function could be effectively employed instead of Bayes estimators using a 
quadratic loss and squared log error loss functions with a proper choice of p  . 

Figures 1-4 shows the relative efficiency of the estimators for different values 
of n , c and p .   
 

Figures 1-4 provide an impression how the efficiencies change with the variation 
in the values ofn , c  and p . The figures are drawn using the efficiencies on y-

axis and corresponding sample size on x-axis. It is observed from figure 1 that as 

n increases efficiencies decreases. However, the rate of decrease in the 

efficiency varies for different values of c . It is also noted from the results that if 

the sample size n is sufficiently large then the effect of c  on efficiencies is 

negligible. From figure 2, we observe that the efficiency of ˆ
bgeθ with respect to 

ˆ
bqθ of θ   becomes greater than one when p ≥ 3. Figures 3 and 4 shows that as n  

increases efficiencies also increase. 
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Table 1: The Bayes estimators ˆ
bqθ , ˆ

bslθ , ˆ
bgeθ , the mle ˆ

mleθ and the risk of the 

estimators ˆ( )R
bq

θ , ˆ( )R bslθ  and  ˆ( )R bgeθ  with corresponding 

values of c =1, 2 and 1,1p = −  when 0.5θ =  

Size 
n  

θ  ω  c  p  ˆ
bqθ  ˆ

bslθ  ˆ
bgeθ  ˆ

mleθ  ˆ( )R
bq

θ  ˆ( )R bslθ  
ˆ( )R bgeθ  

20 0.5 1 1 1 .5261 

(.1345) 

.5129 

(.1292) 

.4997 

(.1253) 

.5261 

(.1345) 

.0523 .0482 .0263 

50 0.5 1 1 1 .5151 

(.0722) 

.5071 

(.0708) 

.5020 

(.0696) 

.5151 

(.0722) 

.0201 .0198 .0102 

100 0.5 1 1 1 .5110 

(.0524) 

.5082 

(.0516) 

.5054 

(.0509) 

.5110 

(.0524) 

.0104 .0097 .0051 

            

20 0.5 1 2 1 .5132 

(.1178) 

.4955 

(.1154) 

.4820 

(.1137) 

.5261 

(.1345) 

.0549 .0514 .0278 

50 0.5 1 2 1 .5103 

(.0721) 

.5041 

(.0716) 

.4989 

(.0709) 

.5151 

(.0722) 

.0209 .0203 .0101 

100 0.5 1 2 1 .5076 

(.0516) 

.5029 
(.0519) 

.5003 

(.0517) 

.5110 

(.0524) 

.0103 .0104 .0054 

            

20 0.5 1 1 -1 .5261 

(.1345) 

.5129 

(.1292) 

.5247 

(.1303) 

.5261 

(.1345) 

.0519 .0489 .0265 

50 0.5 1 1 -1 .5151 

(.0722) 

.5071 

(.0708) 

.5113 

(.0721) 

.5151 

(.0722) 

.0203 .0200 .0099 

100 0.5 1 1 -1 .5110 

(.0524) 

.5082 

(.0516) 

.5057 

(.0521) 

.5110 

(.0524) 

.0102 .0099 .0053 

            

20 0.5 1 2 -1 .5132 

(.1177) 

.4955 

(.1154) 

.5067 

(.1160) 

.5261 

(.1345) 

.0561 .0514 .0259 

50 0.5 1 2 -1 .5103 

(.0720) 

.5041 

(.0716) 

.5048 

(.0708) 

.5151 

(.0722) 

.0211 .0206 .0103 

100 0.5 1 2 -1 .5076 

(.0516) 

.5029 
(.0519) 

.5039 

(.0503) 

.5110 

(.0524) 

.0103 .0102 .0061 
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Table 2:  The Bayes estimators ˆ
bqθ , ˆ

bslθ , ˆ
bgeθ , the mle ˆ

mleθ and the risk of the 

estimators ˆ( )R
bq

θ , ˆ( )R bslθ and  ˆ( )R bgeθ with corresponding values 

of c =1, 2 and 1,1p = −  when 1.0θ =  

Size 
n  

θ  ω  c  p  ˆ
bqθ  ˆ

bslθ  ˆ
bgeθ  ˆ

mleθ  
ˆ( )R
bq

θ  ˆ( )R bslθ  
ˆ( )R bgeθ  

20 1 1 1 1 1.0673 

(.2603) 

1.0418 

(.2489) 

1.0141 

(.2392) 

1.0673 

(.2603) 

.0514 .0481 .0259 

50 1 1 1 1 1.0342 

(1411) 

1.0222 

(.1372) 

1.0118 

(.1347) 

1.0342 

(1411) 

.0203 .0199 .0124 

100 1 1 1 1 1.0230 

(.1049) 

1.0178 

(.1033) 

1.0123 

(.1025) 

1.0230 

(.1049) 

.0107 .0096 .0052 

            

20 1 1 2 1 1.0246 

(.2393) 

.9909 

(.2416) 

.9834 

(.2376) 

1.0673 

(.2603) 

.0548 .0514 .0276 

50 1 1 2 1 1.0189 

(.1521) 

.9997 

(.1536) 

.9913 

(.1524) 

1.0342 

(1411) 

.0208 .0204 .0117 

100 1 1 2 1 .9918 

(.1026) 

1.0063 

(.1041) 

1.0012 

(.1033) 

1.0230 

(.1049) 

.0103 .0104 .0054 

            

20 1 1 1 -1 1.0673 

(.2603) 

1.0418 

(.2489) 

1.0597 

(.2498) 

1.0673 

(.2603) 

.0519 .0489 .0265 

50 1 1 1 -1 1.0342 

(1411) 

1.0222 

(.1372) 

1.0254 

(.1403) 

1.0342 

(1411) 

.0203 .0200 .0099 

100 1 1 1 -1 1.0230 

(.1049) 

1.0178 

(.1033) 

1.0195 

(.1064) 

1.0230 

(.1049) 

.0102 .0099 .0053 

            

20 1 1 2 -1 1.0246 

(.2393) 

.9909 

(.2406) 

1.0056 

(.2411) 

1.0673 

(.2603) 

.0561 .0514 .0259 

50 1 1 2 -1 1.0189 

(.1521) 

.9997 

(.1533) 

1.0033 

(.1468) 

1.0342 

(1411) 

.0211 .0206 .0103 

100 1 1 2 -1 .9918 

(.1026) 

1.0063 

(.1041) 

1.0024 

(.0926) 

1.0230 

(.1049) 

.0103 .0102 .0055 
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Fig.1:Graphs of Relative Ef ficiency of QL w .r.t MLE for different 

values of C w hen n=10, 20, 50 and 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

Sample Size

E
ff

ic
ie

n
c
y C=1

C=2

Fig.2: Graphs of Relative Eff iciency of GE w .r.t. QL for different 

values of C and P w hen n = 10, 20, 50 and 100
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Fig.3:Graphs of Relative Eff iciency of SL W.R.T. QLfor dif ferent 

values of C w hen n=10, 20, 50 and 100
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Fig.4:Graphs of Relative Ef ficiency of SL w .r.t. GE for dif ferent 

values of  C and P w hen n=10, 20, 50 and 100
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